

ibm.com/redbooks

IBM Branch Transformation
Toolkit 5.1
Migration and Usage Guidelines

Bill Moore
Frank Wong

Li Jie
Yin Fei

Zhang Ji Feng
Luo Yi

Migrate from Branch Transformation
Toolkit 4.3 to 5.1

Build applications using Branch
Transformation Toolkit 5.1

Test and troubleshoot
your application

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM Branch Transformation Toolkit 5.1 Migration
and Usage Guidelines

June 2006

International Technical Support Organization

SG24-7160-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2006)

This edition applies to Versions 4.3 and 5.1 of IBM Branch Transformation Toolkit for WebSphere
Studio.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiii
Comments welcome. xiv

Part 1. Migration . 1

Chapter 1. Introduction to IBM Branch Transformation Toolkit 3
1.1 Objectives . 4
1.2 How this book is organized . 5
1.3 Branch Transformation Toolkit 5.1 architecture . 8
1.4 Terms and definitions . 11

1.4.1 Client-side terms and concepts. 12
1.4.2 Server side terms and concepts . 13

1.5 Concept mappings . 15
1.5.1 Toolkit application architecture . 15
1.5.2 Application server components . 15
1.5.3 New tools in Branch Transformation Toolkit V5.1 19

Chapter 2. Migration strategy. 21
2.1 Introduction to migration . 22
2.2 Hardware and software requirements . 23

2.2.1 Development and runtime requirements . 24
2.2.2 Additional requirements . 26

2.3 Migration stages . 27
2.3.1 Premigration stages . 28
2.3.2 The migration stage . 28
2.3.3 Post-migration stage . 29

2.4 Things to do before migration . 29
2.4.1 Migration assessments . 30
2.4.2 Education . 30
2.4.3 Installation of the new development environment 31
2.4.4 Installation of a runtime environment . 32
2.4.5 Research. 32
2.4.6 Code preparation . 33
2.4.7 The migration plan . 33

© Copyright IBM Corp. 2006. All rights reserved. iii

2.5 Elements of migration . 35
2.5.1 Application code . 36
2.5.2 Development environment . 36
2.5.3 Installation of development environments. 40
2.5.4 Testing . 54
2.5.5 Runtime environment . 55
2.5.6 Deployment processes . 56

Chapter 3. Planning a Branch Transformation Toolkit migration 57
3.1 Version 5.1 End-to-end programming model . 58

3.1.1 Branch Transformation Toolkit components 59
3.1.2 Tools . 71
3.1.3 Other features . 74

3.2 Application packaging and topology . 75
3.2.1 Application packaging . 75
3.2.2 Topology . 76

3.3 Workload management decisions . 78
3.3.1 Benefits . 78
3.3.2 Web server workload management . 79

3.4 Server cluster workload management. 79
3.4.1 Workload management considerations. 80

3.5 Migration considerations for custom extensions . 82
3.5.1 Extensions in Branch Transformation Toolkit 4.3 83
3.5.2 Extension points in migration tools . 84

3.6 Limitations . 85
3.6.1 Limitations of Branch Transformation Toolkit 5.1 function 85
3.6.2 Limitations for migration . 87

Chapter 4. Preparing for migration . 89
4.1 Analysis and preparation. 90
4.2 Setting up the migration tools . 91
4.3 Customizing the migration tools . 96

Chapter 5. Migrating an application . 97
5.1 Creating a new migration project. 98
5.2 Using the migration tools. 102

5.2.1 Migrating the dse.ini file . 103
5.2.2 Migrating data and format definitions . 104
5.2.3 Migrating server operations. 106
5.2.4 Migrating flow processors . 109
5.2.5 Migrating screen flow processors . 110
5.2.6 Migrating self-defined files . 111
5.2.7 Migrating tooling artifacts . 113
5.2.8 Diagnosis for the migration tool. 114

iv IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5.3 Manual modification for migration . 115
5.3.1 Modifying the generated definition files. 115
5.3.2 Creating a CHA database . 116
5.3.3 Fixing errors . 118

Chapter 6. Post-migration activities . 119
6.1 Sample project requirements . 120

6.1.1 Copying the required JAR files to the BaseSample project 120
6.1.2 Copying the response.res file to the BaseSampleWeb project 121
6.1.3 Creating a Java project to include user-defined classes. 122
6.1.4 Modifying invoker's properties files . 123

6.2 Importing the required EARs for version 5.1 . 124
6.2.1 Importing the BTTFormatter.ear . 124
6.2.2 Importing BTTServicesInfra.ear . 127
6.2.3 Importing BTTCHAEAR.ear . 130
6.2.4 Importing dummysnalu0.rar . 131

6.3 Preparing the client and the server . 132
6.3.1 Creating the client . 133
6.3.2 Copying client definition files. 137
6.3.3 Creating a server. 143

6.4 Adding and modifying code . 153
6.4.1 Business logic layer . 153
6.4.2 Presentation layer . 182

Chapter 7. Testing and deployment. 209
7.1 Configuring the test environment . 210

7.1.1 Preparing the CHA database . 210
7.1.2 Creating a server. 210
7.1.3 Adding application to the test environment 210
7.1.4 Launching the migrated application . 211

7.2 Java client . 211
7.3 HTML client . 213
7.4 Application deployment . 214

Part 2. Development with Branch Transformation Toolkit V5.1 . 223

Chapter 8. Building an application with Branch Transformation
Toolkit V5.1 . 225

8.1 Before getting started . 226
8.1.1 Application scenario . 226
8.1.2 Developing the system specification . 227
8.1.3 Branch Transformation Toolkit . 234

8.2 Leveraging the WebSphere Studio features . 235
8.2.1 Development using WebSphere Studio Application Developer . . . 236

 Contents v

8.2.2 Using Integration Edition . 243
8.3 Developing an application using Branch Transformation Toolkit 248

8.3.1 Development paths . 248
8.3.2 Preparing for sample application. 254
8.3.3 Creating the context hierarchy with CHA Editor 265
8.3.4 Creating message formats with Format Editor 280
8.3.5 The Branch Transformation Toolkit architecture 289
8.3.6 Setting up CHA and formatter services. 298
8.3.7 Creating a Single Action EJB . 307
8.3.8 Developing the Web facade with Struts Tools BTT Extensions . . . 320
8.3.9 Adding the Journal service . 360
8.3.10 Using Graphical Builder and Business Process BTT Wizard 382

8.4 Developing a rich Java client. 431
8.4.1 Rich Java client overview . 432
8.4.2 Creating the client operation . 434
8.4.3 Creating Java client using VisualBeans . 442
8.4.4 Connecting the view to the operation . 454
8.4.5 Displaying the operation messages . 457
8.4.6 Creating the invoker . 461
8.4.7 Running this application . 472

Appendix A. Branch Transformation Toolkit development and
runtime requirements . 477

A.1 Microsoft Windows 2000. 479
A.2 Microsoft Windows XP requirements . 481
A.3 Microsoft Windows Server 2003 requirements . 483
A.4 Linux on Intel requirements. 484
A.5 Sun Solaris requirements . 487
A.6 IBM AIX requirements. 488
A.7 IBM z/OS requirements. 490
A.8 Additional requirements . 490

Appendix B. Setting up a Branch Transformation Toolkit
sample application . 493

B.1 Setting up the Java sample application . 494
B.2 Setting up the HTML sample application . 498

Appendix C. Additional material . 505
Locating the Web material . 505
Using the Web material . 505

System requirements for downloading the Web material 506
How to use the Web material . 506

Abbreviations and acronyms . 507

vi IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Related publications . 509
IBM Redbooks . 509
Online resources . 509
How to get IBM Redbooks . 509
Help from IBM . 509

Index . 511

 Contents vii

viii IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2006. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
CICS®
ClearCase®
DB2 Universal Database™
DB2®
Eserver®
Eserver®
eServer™

Extreme Blue™
ibm.com®
IBM®
IMS™
LANDP®
Lotus Notes®
Lotus®
Notes®
Rational®

Redbooks (logo) ™
Redbooks™
RS/6000®
S/390®
WebSphere®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, J/XFS, Java, JavaBeans, JavaScript, JavaServer, JavaServer Pages, JDBC,
JDK, JRE, JSP, JVM, J2EE, Solaris, Sun, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Internet Explorer, Microsoft, Windows Server, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Intel, Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

x IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Preface

This IBM® Redbook shows in detail the IBM Branch Transformation Toolkit for
WebSphere Studio Version 5.1 and explains how to migrate from Branch
Transformation Toolkit Version 4.3 to Branch Transformation Toolkit 5.1. We
provide guidelines covering the architecture of the target solution, the correct use
of migration tools, and migration-sizing techniques. This redbook also describes
how to build new applications using Branch Transformation Toolkit V5.1. We
explain both top-down and bottom-up development models, and discuss how to
use WebSphere Studio development plug-ins and Branch Transformation Toolkit
development plug-ins. We also describe the rich Java™ client development
using the Branch Transformation Toolkit.

This book is intended for the following audiences:

� Solution architects who require an overall description of what the IBM Branch
Transformation Toolkit for WebSphere Studio provides and how you can use
it to build a solution.

� IT professionals and executives who require a broad understanding of the
architecture of the Branch Transformation Toolkit and its implementation.

� Readers who are familiar with object-oriented software and related
development techniques, and have a general knowledge of Java 2 Platform,
Enterprise Edition (J2EE™) and related technologies, including network
computing and Internet technologies.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Raleigh
Center.

Bill Moore is a technical staff member at the IBM Extreme Blue™ lab in Raleigh,
North Carolina where he provides project coordination and leadership for
Extreme Blue projects.

From 2000 to 2006 Bill was an IBM WebSphere® specialist at the ITSO, Raleigh
Center producing IBM Redbooks™ and other associated documentation for
Application Integration & Middleware and Rational® products. He wrote
extensively and taught classes on WebSphere and related topics. Before joining
the ITSO, BillI was a Senior AIM Consultant at the IBM Transarc lab in Sydney,

© Copyright IBM Corp. 2006. All rights reserved. xi

Australia. He has 21 years of application development experience on a wide
range of computing platforms using many different coding languages. His current
areas of expertise include J2EE, WebSphere Application Server, application
development tools, object-oriented programming and design, and e-business
application development.

Frank Wong is a Software Engineer at the IBM China Development Lab in
Taipei, Taiwan. He worked on the project that implemented the technical support
site of ibm.com® for two years. His areas of expertise include J2EE, Web
services, design patterns and software development methodologies.

Li Jie is a Staff Software Engineer at the IBM China Development Lab in Beijing,
People’s Republic of China. His area of expertise include C/C++, Java
development, software development methodology and human-computer
interfaces.

Zhang Ji Feng is a Technical Manager at the Beijing Nantian Software Co., Ltd.,
People’s Republic of China. He has five years of experience in the banking
industry and has worked at Natian for five years. His areas of expertise include
C/C++, J2EE, bank branch teller systems, bank core systems, design patterns
and software development methodologies.

Luo Yi is a Software Engineer at the Beijing Nantian Software Co., Ltd. People’s
Republic of China. He has over four years of experience in Java development
and J2EE technology. His areas of expertise include Java programming,
WebSphere Application Server development, distributed systems, testing, and
troubleshooting. He also has experience with C# development.

Yin Fei is an Advisory Software Engineer at the China Software Development
Lab in Beijing, People’s Republic of China. He has worked at IBM for ten years.
He has experience in branch transformation solution for retail banking, include
branch teller, self-service ATM and Kiosk systems, and Multi-Channel
integration. Currently he is focusing on Branch Transformation Toolkit
developement and services.

xii IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The authors: Yin Fei, Frank Wong, Li Jie, Luo Yi, Zhang Ji Feng

Thanks to the following people for their contributions to this project:

Yu Ling Tong
IBM People’s Republic of China

Martin Leclerc
IBM Canada

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

 Preface xiii

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

xiv IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Migration

In this part we describe migration from IBM Branch Transformation Toolkit for
WebSphere Studio V4.3 to IBM Branch Transformation Toolkit for WebSphere
Studio V5.1.

Part 1

© Copyright IBM Corp. 2006. All rights reserved. 1

2 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Chapter 1. Introduction to IBM Branch
Transformation Toolkit

This chapter describes the objectives, focus, and the intended audience of this
redbook. Besides outlining the architecture and topologies of the IBM Branch
Transformation Toolkit for WebSphere Studio V5.1, this chapter also provides a
mapping from Branch Transformation Toolkit 4.3 to Branch Transformation
Toolkit 5.1 terms and concepts.

This chapter describes the following topics:

� 1.1, “Objectives” on page 4
� 1.2, “How this book is organized” on page 5
� 1.3, “Branch Transformation Toolkit 5.1 architecture” on page 8
� 1.4, “Terms and definitions” on page 11
� 1.5, “Concept mappings” on page 15

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 Objectives
Financial institutions are always trying to offer and adapt their products and
services to ensure that they are able to respond to future market challenges and
support changing business operations in an increasingly competitive
environment. The IBM Branch Transformation Toolkit for WebSphere Studio
provides a set of facilities to help with each of the processes and presents them
to development teams in a familiar manner. The Branch Transformation Toolkit is
a pragmatic infrastructure that is designed and built in such a way that existing
mission-critical systems can evolve, rather than be replaced. The toolkit
architecture provides an environment for high development productivity and
great flexibility to meet the challenges of the new pace of change in the
technology industry and the banking industry.

IBM Branch Transformation Toolkit for WebSphere Studio 5.1 is an evolutionary
offering that helps users of earlier versions move up to the full power and
versatility of the IBM WebSphere Application Server and IBM WebSphere
Business Integration Server Foundation. The new Branch Transformation Toolkit
is based on the J2EE standard and complies with J2EE specification version 1.3.
The version 5.1 toolkit provides a migration path to allow clients to reuse much of
their existing toolkit application code base while taking advantage of the
WebSphere Application Server J2EE environment. With version 5.1, you can
bypass toolkit functionality entirely and access J2EE components directly, if
desired.

Usually, users perceive migration as a form of change. However, migration is a
way of life. Branch Transformation Toolkit continues to evolve in order to support
ever-increasing functionalities. To use a new functionality, applications and
processes have to evolve as well. Any action that is taken to reduce the cost of
change helps save costs in the long run. Investing the time to do it immediately
saves time and money in the future.

The object of this redbook is to introduce the tools and the manner in which they
are to be used while migrating from Branch Transformation Toolkit V4.3 to
Branch Transformation Toolkit V5.1. Details about our collective experience and
the lessons we learned from carrying out a practical migration, are also provided.
The contents of this book cover the entire migration process, that is, from
strategy and analysis to architecture, operation, and deployment environment
migration. This book also describes the best practices to be followed in order to
create applications efficiently in the new environment provided by the Branch
Transformation Toolkit.

4 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

1.2 How this book is organized
This migration and usage guide is intended for use by solution architects and
developers to assist in their migration effort. The focus of this redbook is
migration from Branch Transformation Toolkit version 4.3 to version 5.1,
including migration tools and new development tools.

The migration path covers migration preparation, migrating operation, manual
modification, testing and deployment, as shown in Figure 1-1.

Figure 1-1 The migration path

This redbook contains the following chapters:

� Chapter 1, “Introduction to IBM Branch Transformation Toolkit” on page 3

This chapter describes the objectives and organization of the book. The
Branch Transformation Toolkit V5.1 architecture is outlined and a mapping of
concept from Branch Transformation Toolkit version 4.3 to version 5.1 is
provided.

Analysis Strategy Planning

Preparation Post-migration
activities

Scenario analysis

Tools customization

Presentation layer

Business logic layer

Migration
operation

Migration project

Tooling Manual
modification

Error fixing

Version 5.1 Toolkit
application

Test and
deployment

Deployment

Client access

HTML client Java client

 Chapter 1. Introduction to IBM Branch Transformation Toolkit 5

This chapter includes the following topics:

– 1.1, “Objectives” on page 4
– 1.2, “How this book is organized” on page 5
– 1.3, “Branch Transformation Toolkit 5.1 architecture” on page 8
– 1.4, “Terms and definitions” on page 11
– 1.5, “Concept mappings” on page 15

� Chapter 2, “Migration strategy” on page 21

This chapter covers the best practices in migration strategies and discusses
the stages of a migration.

This chapter includes the following topics:

– 2.1, “Introduction to migration” on page 22
– 2.2, “Hardware and software requirements” on page 23
– 2.3, “Migration stages” on page 27
– 2.4, “Things to do before migration” on page 29
– 2.5, “Elements of migration” on page 35

� Chapter 3, “Planning a Branch Transformation Toolkit migration” on page 57

This chapter discusses the methodology for using Branch Transformation
Toolkit and details about the migration activities. The programming model and
topology and customer extensions and limitations are also detailed.

This chapter includes the following topics:

– 3.1, “Version 5.1 End-to-end programming model” on page 58
– 3.2, “Application packaging and topology” on page 75
– 3.3, “Workload management decisions” on page 78
– 3.5, “Migration considerations for custom extensions” on page 82
– 3.6, “Limitations” on page 85

� Chapter 4, “Preparing for migration” on page 89

This chapter outlines the work that must be completed before dealing with a
migration. This comprises consists of several phases, including tool
customization.

This chapter includes the following topics:

– 4.1, “Analysis and preparation” on page 90
– 4.2, “Setting up the migration tools” on page 91
– 4.3, “Customizing the migration tools” on page 96

� Chapter 5, “Migrating an application” on page 97

This chapter talks about how to migrate an application by using the migration
tools provided by the Branch Transformation Toolkit. We migrated a sample
application using this method. A migration project was created before carrying

6 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

out an automatic migration. The manual work needed to complete the
migration is also described.

This chapter includes the following topics:

– 5.1, “Creating a new migration project” on page 98
– 5.2, “Using the migration tools” on page 102
– 5.3, “Manual modification for migration” on page 115

� Chapter 6, “Post-migration activities” on page 119

This chapter discusses the post migration activities that are necessary to
complete the migration. This includes the application architecture, operation,
flow, business process, event and communication service, as well as the
development and deployment environment.

This chapter includes the following topics:

– 6.1, “Sample project requirements” on page 120
– 6.2, “Importing the required EARs for version 5.1” on page 124
– 6.3, “Preparing the client and the server” on page 132
– 6.4, “Adding and modifying code” on page 153

� Chapter 7, “Testing and deployment” on page 209

This chapter provides details about how to test and deploy the migration
application. We used two types of clients to call the services on the server
side to complete the testing.

This chapter includes the following topics:

– 7.1, “Configuring the test environment” on page 210
– 7.2, “Java client” on page 211
– 7.3, “HTML client” on page 213
– 7.4, “Application deployment” on page 214

� Chapter 8, “Building an application with Branch Transformation Toolkit V5.1”
on page 225

This chapter provides information about the sample application we
constructed using Branch Transformation Toolkit V5.1.

This chapter includes the following topics:

– 8.1, “Before getting started” on page 226
– 8.2, “Leveraging the WebSphere Studio features” on page 235
– 8.3, “Developing an application using Branch Transformation Toolkit” on

page 248
– 8.4, “Developing a rich Java client” on page 431

 Chapter 1. Introduction to IBM Branch Transformation Toolkit 7

1.3 Branch Transformation Toolkit 5.1 architecture
This section introduces the prime architecture of Branch Transformation Toolkit
5.1. The new version is based on the J2EE standard. The development
environment for toolkit applications is integrated with WebSphere Studio
Application Developer or WebSphere Studio Application Developer Integration
Edition, which are based on the Eclipse Platform. The runtime environment for
toolkit applications is based on WebSphere Application Server or WebSphere
Business Integration Server Foundation.

The architecture of a Branch Transformation Toolkit 5.1 application solution is
based on a logical three-tier model:

� Back-end enterprise tier
� Application server tier
� Client tier

Figure 1-2 on page 9 depicts these tiers.

8 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 1-2 The logical tiers in Branch Transformation Toolkit architecture

Client tier

BTT data
context

Java client

BTT panel (AWT)

Application server tier
Application presentation layer
(Web container)

EJB

Application logic layer
(EJB container)

EJB

Struts action

Struts action servlet &
request processor

View

Struts form

BTT data
context

EJB

WSIF/
EJB

BTT data
context

BTT EJB

Process Choreographer
Micro flow

BTT BTT data
context

BTT client side
micro flow

Services

WSIF

Invokers

WSIF/
EJB

Back-end enterprise tier

JDBC
database services

JCA resource
adapters

Data

WSIF

 Chapter 1. Introduction to IBM Branch Transformation Toolkit 9

The client tier is responsible for presenting an interface to the user in a client
device. The Branch Transformation Toolkit 5.1 supports the following types of
clients:

� Java clients running as applets in a browser or as Java applications

For Java clients, the toolkit provides a set of graphical user interface (GUI)
JavaBeans™ to build the client user interface and a mechanism to navigate
the application views.

� HTML browser clients

For HTML browser clients, the toolkit’s Struts Extension framework on the
application presentation layer of the application server tier manages the user
interface and view navigation.

The application server tier has two parts:

� The application presentation layer

The application presentation layer is responsible for creating a request for the
invocation of business logic that is hosted within the application logic layer. In
HTML browser clients, the presentation layer is also responsible for providing
the view navigation. The application presentation layer converts an action
carried out by a user in the user interface into a Web Services Invocation
Framework (WSIF) message or Enterprise JavaBean (EJB™) method
invocation, which the presentation layer then sends to the application logic
layer.

� Application logic layer

The application logic layer is responsible for performing the business process
that fulfils the presentation layer request. A business process consists of a set
of activities and may involve accessing and manipulating enterprise data and
performing financial service procedures in the back-end enterprise tier.

The application logic layer can use two mechanisms for performing the
business process. If the application server tier is running on WebSphere
Business Integration Server Foundation, the application logic layer can use
the Business Process Choreographer and work area features. If the
application server tier is running on WebSphere Application Server, the
application logic layer can use a Single Action EJB. For more details about
Business Process Choreographer and Single Action EJB, refer to 1.4, “Terms
and definitions” on page 11.

The back-end enterprise tier consists of enterprise level databases and older
systems that provide existing business logic and services. The application logic
layer communicates with these databases and systems through J2EE Connector
Architecture (JCA) connectors, database services, and formatters. The

10 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

connectors, database services, and formatters form an interface so that toolkit
applications do not impose any changes directly on these databases and
systems.

As a result of being written in Java, the design and portability of the product
allows the application tier servers to exist at either the branch level, that is, one
server per branch, the regional level, that is, one server per a group of branches,
or at a centralized level, that is, a single server for the entire financial institution.
These options provide the flexibility to achieve the right balance between the
number of servers and network bandwidth, with no changes to application logic.

Branch Transformation Toolkit 5.1 supports multiple channels for application
delivery. For example, a typical configuration for bank tellers is a grouping of
client workstations with physically attached financial devices, with each one
having an HyperText Markup Language (HTML) browser or a Java client desktop.
The client has access to the application presentation layer on server side through
HTTP or Hypertext Transfer Protocol Secure (HTTPS) protocol. The server side
provides services for the client workstation and access to the business
processors provided by the application logic layer.

Internet banking users access financial services through a Web browser running
on a device connected to the Internet. The HTTP protocol connects the client
side to the server side, which is in the application presentation layer. The
application is usually located at a central site behind a firewall. In most cases, the
client views are HTML pages. However, an HTTP protocol can use other
technologies and presentation options such as eXtensible Markup Language
(XML) messages if the client device supports them.

Toolkit applications can also appear in kiosks or ATMs that run Internet
technologies such as a Web browser and Java. The client usually supports the
financial devices present in the terminal such as magnetic stripe reader (MSR),
chip card reader, receipt printer, passbook printer, bar code reader, or
touch-screen display.

1.4 Terms and definitions
This section introduces the terms and definitions used in this book, as a
reference. Some of them are newly defined in Branch Transformation Toolkit 5.1
because this is the first time that they have been used in toolkit architecture,
especially on the server side. The terms and concepts can be grouped according

 Chapter 1. Introduction to IBM Branch Transformation Toolkit 11

to their architectural location, that is, either client side or server side. Figure 1-3
shows some terms and definitions within the boundary of toolkit architecture.

Figure 1-3 Toolkit terms and concepts

1.4.1 Client-side terms and concepts
The following terms and concepts apply to the toolkit client-side architecture:

� Contexts

A context is the container for the data elements needed by a business entity
such as a user or branch. Contexts have a hierarchy to enable these
business entities to share common data. For example, in a branch, each teller
will have a context that contains data about the teller, but they will all share
the branch context that will contain data about the branch. In this relationship,
the branch context is the parent and each teller context a child.

� Formatters

A formatter transforms a string into data in a context or data in a context to a
string. This enables an application to move data into and out of the context
hierarchy and to create messages to send to a host, financial device, or
service in a format understood by the message's destination. The toolkit
provides an extensive set of the most commonly needed formatters for

Java client
technology

Web client
technology

HTML Browser

Bean invokerJava
request
handler

Java
presentation

handler

Pool

InvokerInvokerInvoker

Cache

InvokerInvokerBean
proxy

Session
info.

Data
context

C/S messaging APIs

Struts Extension

JSP

JSP

JSPJSP

Session
info.

Data
context

HTML screen flow

Presentation logic

BTT extension – Micro flow
Data

context

Business process

Data
context

Single action EJB
(non-flow base logic)

Business and integration logic

Event
mechanism

Formatter

CHA

Services

Database
service

JCA
Lu)/Lu62

Event
manager

Work
area

WebSphere Application Server

IIO
B or W

S D
L/W

S F

Database server

EIS

12 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

financial service applications, including Extended Binary Coded Decimal
Interchange Code (EBCDIC), date, numeric, packed, binary, and other
formatters.

� Events

An event is how components within the application presentation layer
communicate with each other. A notifier is the sender of an event. A handler,
as the receiver of that event, is responsible for consuming the event or
propagating it to other handlers. An event manager acts as the event
controller between notifiers and handlers in order to manage both local and
remote events.

� Client operation

A client operation is what Java clients use to launch business processes in
the application logic layer. An invoker maps the client operation to the
business process.

1.4.2 Server side terms and concepts
The Branch Transformation Toolkit components that run on application servers
can be divided into two categories: components running in the Web container of
the application presentation layer and components running in the EJB container
of the application logic layer. The Web container and the EJB container share
some toolkit common components. The corresponding terms are divided as
follows:

Shared components across containers
These terms and concepts describe the components shared by the Web and
EJB containers:

� Common Hierarchical Area (CHA)

The Common Hierarchical Area holds data within a context hierarchy for the
business process component when it performs a business process. This is a
distributed component that allows the data to exist anywhere. It also enables
nontoolkit applications to store general global session data. The application
uses the CHA application programming interface (API) to move data into and
out of the CHA.

� CHA formatter service

The CHA formatter service handles formatting and unformatting of strings
and data items for applications and services. It converts a specific data item
into a string representation of the data item and parses a string into a specific
data item.

 Chapter 1. Introduction to IBM Branch Transformation Toolkit 13

Web container components
These terms and concepts describe the components used by the Web container:

� Invoker

An invoker is the interface to an EJB in the application logic layer. A request
handler, which is a part of the multichannel architecture, or the toolkit Struts
extension uses a specific invoker to start the business process performed by
the EJB associated with the invoker.

� Client/Server Messaging API

The Java Client/Server connectivity component enables the Java client and
application presentation layer to communicate through a specific
communication channel. The component contains a request handler, a Bean
Invoker Factory, and a presentation handler. The request handler passes the
request to the Bean Invoker Factory, which then instantiates an invoker to call
a Single Action EJB or a business process in the application logic layer. The
presentation handler handles the response from the application logic layer to
render the result appropriately for the Java client.

� Struts extensions

The Struts extensions component provides a set of features and mechanisms
that support an HTML-based GUI that is presented in a Web browser, using
an HTTP connection. The toolkit Struts Extensions component is based on
the Apache Struts Web application Framework.

EJB container components
These terms and concepts describe the components used by the EJB container:

� Business process

This component enables applications to perform business processes using
the Business Process Choreographer in WebSphere Business Integration
Server Foundation. Applications can invoke the business process using the
request handler feature of the multichannel architecture and an EJB interface
or by using a flow processor through the EJB or Web Services Invocation
Framework (WSIF) interface. The request handler and the flow processor
both reside in the application presentation layer.

� Single action EJB

This component enables applications to perform business processes using
the stateful session EJBs. The Invoker component in the presentation layer is
the interface to the single action EJBs.

� Startup beans

A startup bean is a session EJB that loads and runs before an application
starts. The Branch Transformation Toolkit uses startup beans to perform

14 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

initialization for some application logic layer components such as the CHA,
CHA formatter service, and services.

1.5 Concept mappings
Branch Transformation Toolkit 5.1 has many additions and enhancements when
compared with Branch Transformation Toolkit 4.3. In this section, we map the
concepts from Branch Transformation Toolkit version 4.3 to version 5.1.

1.5.1 Toolkit application architecture
A new feature of Branch Transformation Toolkit 5.1 is that it is based on the
J2EE standard architecture. On the client side, the Java client application
remains the same as in version 4.3. The existing code can be used in the new
toolkit environment without modification. However, the Branch Transformation
Toolkit application server tier has been split into two layers to separate the
presentation from the business logic. The application presentation layer residing
in the Web container of the J2EE environment is now restricted to creating
requests for business logic hosted in the application-logic layer. For non-Java
clients, the application presentation layer provides view navigation based on the
Apache Struts framework. The application-logic layer focuses on performing the
business logic requests.

This change enables applications to use many more capabilities of WebSphere
Application Server or WebSphere Business Integration Server Foundation while
providing backward compatibility with version 4.3. Version 5.1 of the Branch
Transformation Toolkit provides of a set of entirely new components that perform
and support a business process, and helps access services and data from the
back-end enterprise tier.

1.5.2 Application server components
This section describes the difference between the old version and the new
version of the application server components resulting from the new architecture.
Many old toolkit components that ran in the application server have been
modified or changed significantly. These components include the following:

Flow processors
The flow processors do not exist in application servers any longer. They have
been replaced with business processes. Using the client/server interfaces, toolkit
clients now pass requests to an invoker or to a WebSphere Server Integration
Foundation action. These requests call a business process component or single
action EJBs in the application logic layer.

 Chapter 1. Introduction to IBM Branch Transformation Toolkit 15

Server operations
Server operations do not exist in application servers now. Stepped operations
have been replaced with business processes, and non-stepped operations with
business processes or single action EJBs. Through the client/server interfaces,
toolkit clients pass requests to an invoker or a WebSphere Server Integration
Foundation action that calls the business process component or single action
EJBs in the application logic layer.

Server side components
This section describes the changes made to the server components, based on
the container they are used by.

Shared components across containers
These components can be shared across the Web container and the EJB
container, that is, they can be used both by the application presentation layer
and the application logic layer.

� Common Hierarchical Area (CHA)

This component uses J2EE technology to wrap contexts as EJBs so that they
can be accessed by any entity running in the EJB container. This enables a
business process to get the data it needs. Since CHA contexts are EJBs,
non-toolkit applications can use CHA to contain general global session
information. This is a new concept that has been introduced in version 5.1.

� CHA contexts

These contexts, which run in the application server, are different from those
running in the Java client side. Compared to contexts running on the Java
client side, the CHA contexts have additional wrapping so that they can exist
as EJBs. There is no connection between the contexts and CHA contexts.
This too is a new concept introduced in version 5.1.

� Events

The events running in the application server side have a different structure
from those running in the Java client side. The application server side events
use Java Message Service (JMS) for events propagation.

� Externalizers

Externalizers exist in both the layers, except that the application logic layer
does not contain externalizers for toolkit entities that are related purely to
presentation, such as flow processors and views.

16 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Application presentation layer components (Web container)
This section describes the components in the new application presentation layer.
These components operate within the Web container of WebSphere Application
Server. They call application server components through WSIF messages or
through EJB method invocation to carry out transactions.

� Sessions

The session management component now exists only in the application
presentation layer. All session handling is managed through a session
handler, and CHA contexts do not provide any session management features.

� Bean invoker factory

This component creates the invoker that invokes the business logic
implementation in the application logic layer. The implementation can be a
single action EJB or a business process running in the Business Process
Container of WebSphere Business Integration Server Foundation.

� Struts extensions

This component extends the Apache Struts framework to support an
HTML-based GUI that is presented in a Web browser, using an HTTP
connection. The Struts extensions component replaces the HTML request
handler and flow processors. It receives requests from HTML clients and
handles the presentation for those clients. This is another new concept
introduced in version 5.1.

� JavaServer Pages(JSP™)

The JSPs used in Branch Transformation Toolkit 5.1 solutions now make
intensive use of the Struts tag library. Branch Transformation Toolkit 5.1
further extends the tag library to provide more tags for toolkit applications.

� Java client/server messaging APIs

The Java client/server messaging APIs contain the Java client request
handler and the Java client presentation handler. This component does the
same things for Java clients as the Struts extensions component does for
HTML clients.

Application logic layer components (EJB container)
This section describes the components in the new application logic layer. These
components operate within the EJB container of WebSphere Application Server.

� Business process

This component prepares the data for a business process running in the
Business Process Container of WebSphere Business Integration Server
Foundation and creates the response, once the process flow has finished.
WebSphere Studio Application Developer Integration Edition provides the

 Chapter 1. Introduction to IBM Branch Transformation Toolkit 17

process editor as a visual tool to facilitate the creation of business processes.
To reduce migration effort, the business process component provides the
following:

– com.ibm.btt.server.flow.BTTOperActivity
– com.ibm.btt.server.flow.BTTOperStepActivity

These classes replace DSEServerOperation and OperationStep respectively.

This too is a new concept introduced in version 5.1.

� Single action EJBs

These are EJBs that perform business processes. They are functionally
equivalent to business processes running in the Business Process Container,
except that they can run on any edition of WebSphere Application Server and
perform better. This is also a new concept introduced in version 5.1.

� Communication services

These services support communication with back-end enterprise systems,
through JCA. The toolkit provides the SNA JCA Lu0 connector and the SNA
JCA Lu62 connector as resource adapters that conform to the JCA standard.
The SNA JCA Lu62 connector is a new feature of the toolkit.

� Database services

Database services exist in the application logic layer and follow its
architecture. The toolkit provides electronic journal and database table
mapping services.

In the electronic journal, the JDBCJournal is the service requester and
maintains the same API as it did in the previous version.

Because the schema generator JDBCJournalSchemaGenerator and the
JDBC driver must be in the same Java virtual machine (JVM™), the
electronic journal no longer allows an application to call the generator to
create the tables. Instead, the database administrator uses the generator to
create the tables so that they are available when the application starts.

Note: Because WebSphere Application Server now handles the
connection to the database, JDBCJournal no longer needs to get, set, or
load a JDBC™ driver. The JDBCJournal communicates with the service
object JDBCJournalImpl, using local Java calls, EJB method calls,
WebSphere Server Integration Foundation SOAP binding messages, or
WebSphere Server Integration Foundation EJB binding messages. The
service object accesses the database to perform the request sent to it by
the requester JDBCJournal.

18 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

In the database table mapping service, the JDBCTable is the service
requester and maintains the same API as it did in the previous version.

With the new implementation, the externalizer for the service ignores the
following attributes in the service definition:

– databaseURL
– JDBCDriver
– poolName
– sharedConnection
– statementPoolSize

The JDBCServicesConnectionManager has the following new attributes:

– orphanTimeout

The number of seconds that pass before the
JDBCServicesConnectionManager discards an unused or idle connection.

– reapTime

The number of seconds that pass between runs of the pool maintenance
thread.

1.5.3 New tools in Branch Transformation Toolkit V5.1
New tools have been added and existing tools updated in the Branch
Transformation Toolkit V5.1. The changes include the following:

� Graphical builder

The graphical builder is the tool used during toolkit development for creating
and maintaining external definitions. It is a plug-in for WebSphere Studio
Application Developer and WebSphere Studio Application Developer
Integration Edition. The graphical builder provides a development
environment used throughout the development cycle of toolkit applications. It
also acts as a portal from where you can start other tools the toolkit provides.

� CHA editor

The CHA editor is the tool used during toolkit development for creating and
maintaining the external definition files of CHA contexts and their data
elements and types. It provides a visual representation of the structure and

Note: Since WebSphere Application Server now handles the connection to
the database, JDBCTable no longer needs to get, set, or load a JDBC
driver. The JDBCTable communicates with the service object
JDBCTableImpl using a WebSphere Server Integration Foundation
interface. The service object accesses the database to perform the request
sent to it by the requester JDBCTable.

 Chapter 1. Introduction to IBM Branch Transformation Toolkit 19

relieves you of the need to deal with XML tags. The CHA editor is a
WebSphere Studio Application Developer plug-in.

� Format editor

The format editor is the tool used during toolkit development for creating and
maintaining the external definition files of formatters and their CHA contexts
and data elements. It provides a visual representation of the structure and
relieves you of dealing with XML tags. The format editor is a WebSphere
Studio Application Developer plug-in.

� Business process wizard

The business process wizard is the tool used to customize your business
processes to take advantage of toolkit-specific entities such as CHA contexts.
It provides a GUI that relieves you from editing the Business Process
Execution Language(BPEL) files directly.

� Struts tools extensions

The Struts tools extensions provides a GUI to help you extend your Struts
configuration files to take advantage of toolkit-specific entities such as CHA
contexts. It provides a GUI that relieves you from editing the Struts
configuration files in XML format directly. The Struts tools extensions is an
integral part of toolkit development and is documented separately.

� Migration tools

The migration tools provides wizards to help you migrate the toolkit
configuration files, context definitions, formatter definitions, server operations,
flow processors, and screen flows of your version 4.3 application to the
corresponding components of your version 5.1 application. The migration
tools can also generate graphical builder files that enable you to further
modify your migrated application with the graphical builder.

20 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Chapter 2. Migration strategy

This chapter discusses the best practices in migration strategies and planning.
Three migration stages are described and their advantages and disadvantages
discussed here.

The following topics are discussed in this chapter:

� 2.1, “Introduction to migration” on page 22
� 2.2, “Hardware and software requirements” on page 23
� 2.3, “Migration stages” on page 27
� 2.4, “Things to do before migration” on page 29
� 2.5, “Elements of migration” on page 35

2

© Copyright IBM Corp. 2006. All rights reserved. 21

2.1 Introduction to migration
Change is an inevitable part of enterprise application ownership. As new
technologies evolve, applications are adapted to make use of them. The related
technologies used by IBM Branch Transformation Toolkit for WebSphere Studio,
change on a regular basis. For example, a new and major version of the
WebSphere Application Server is often released every 18-24 months.
Correspondingly, a new version of the Branch Transformation Toolkit is often
released to take advantage of the changes in the WebSphere Application Server.
This means that you should consider migrating to new product versions and plan
for migration activities.

Migration strategy is an important prerequisite to consider before starting any
migration work. There are many aspects and details that should be considered in
the migration strategy. Migration is not simply a code upgrade or replacement of
a working platform. The mechanical aspects of migration are relatively easy to
complete. However, a complete migration plan should include the necessary
upgrades to the solution architecture as well as to the application code. You
should also consider the effect migration will have on your business processes
and on the development and deployment environments for your solution.

The migration should not impact normal business practices negatively. Normal
business must continue. When planning for migration to Branch Transformation
Toolkit 5.1, be aware that it will have an impact on several aspects of your
current business. The migration of toolkit applications involves far more than just
the migration of application code. You should plan for migration impacts on your
development environments, build processes, and runtime environments. The key
areas to think about include:

� Application code
� Development environment
� Testing
� Runtime environments
� Deployment processes

At the same time, we recognize that our clients cannot always upgrade their
application software all at once. You can decide how much or how little toolkit
functionality to retain. Version 5.1 allows you to upgrade to a full J2EE
environment incrementally. Alternatively, with the help of Branch Transformation
Toolkit 5.1, you can bypass toolkit functionality entirely, and access the J2EE
components directly.

This chapter describes the migration strategies and considerations at every
stage when migrating to Branch Transformation Toolkit 5.1. It also outlines the
key elements and details to be considered during the migration process.

22 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2.2 Hardware and software requirements
During the migration process, prepare the runtime and development
environments to meet the migration requirements. This section lists the hardware
and software requirements for the runtime and development environments of
Branch Transformation Toolkit 5.1.

The IBM Branch Transformation Toolkit for WebSphere Studio 5.1 supports the
following operating systems:

� Microsoft® Windows® 2000

– Microsoft Windows 2000 Professional with Service Pack 4
– Microsoft Windows 2000 Server with Service Pack 4
– Microsoft Windows 2000 Advanced Server with Service Pack 4

� Microsoft Windows XP

– Microsoft Windows XP Professional with Service Pack 1

� Microsoft Windows Server® 2003

– Microsoft Windows Server 2003, Standard
– Microsoft Windows Server 2003, Enterprise

� Sun™ Solaris™

– Sun Solaris 8 with the Recommended Patch Cluster of November 2003
– Sun Solaris 9 with the Recommended Patch Cluster of November 2003

� Red Hat Linux® on Intel®

– RedHat Linux v7.2
– RedHat Linux v8.0
– RedHat Linux v9.0
– Red Hat Enterprise Linux WS 3.0 Update 1 or 3
– Red Hat Enterprise Linux AS 3.0 Update 1 or 3
– Red Hat Enterprise Linux ES 3.0 Update 1 or 3

� IBM AIX®

– AIX Version 5.1 with the 5100-05 maintenance package

– AIX Version 5.2 with the 5200-01 recommended maintenance package
and APAR iY44183, and PTF U484272

– AIX Version 5.2 with 5200-03 recommended maintenance package

– AIX 5LM version 5.3 with WebSphere Application Server APAR PK01428

� IBM z/OS®

– IBM z/OS 1.2 or later

 Chapter 2. Migration strategy 23

2.2.1 Development and runtime requirements
The hardware requirements for using Branch Transformation Toolkit V5.1 are
different between development environments and runtime environments. For
example, this section talks about the basic requirements for the Microsoft
Windows platform to demonstrate how development requirements compare with
runtime requirements.

For a Windows client, the minimum requirements for a Branch Transformation
Toolkit runtime environment are listed in Table 2-1.

Table 2-1 Client runtime requirements for Branch Transformation Toolkit on Windows

For a Windows server, the minimum requirements for a Branch Transformation
Toolkit runtime environment are listed in Table 2-2:

Table 2-2 Server runtime requirements for Branch Transformation Toolkit on Windows

Microsoft Windows 2000 client side Requirement description

Processor PII 266 MHz or higher

Memory 48 MB minimum /64 MB recommended

Hard drive 50 M

Display 800 x 600 minimum / 1024 x 768
recommended

Intranet test LAN base 16 MB token ring / 100 MB BaseTx
Ethernet recommended

Operating system Microsoft Windows 2000 Professional with
Service Pack 4

Browser Any of the following:

� Netscape Communicator 7.02 or later
with Java Plug-in 1.3.1 or later

� Internet Explorer® 6.0 SP1

Communication protocol TCP/IP

JDK™ Java 2 SDK supplied by WebSphere
Application Server

Windows 2000 server side Requirement description

Processor PIII 500 MHz or higher

Memory 512 MB minimum / 768 MB recommended

24 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Hard drive 100 MB minimum

Intranet test LAN base 16 MB token ring / 100 MB BaseTx
Ethernet recommended

Operating System One of the following:

� Microsoft Windows 2000 Advanced
Server with Service Pack 4

� Microsoft Windows 2000 Server with
Service Pack 4

Application server One of the following is required:

� IBM WebSphere Application Server -
Express V5.1.1

� IBM WebSphere Application Server
V5.1.1

� IBM WebSphere Application Server
Network Deployment V5.1.1

� IBM WebSphere Application Server
for Developers V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1 for
Multiplatforms

Communication protocol TCP/IP

Communication services (LU0, LU6.2) IBM Communications Server V6.1.2

Database manager One of the following:

� DB2® UDB Enterprise Server Edition
v8.1 FP5 or FP7

� DB2 UDB Enterprise Server Edition
v8.2

� Oracle 8i Standard/Enterprise
Release 3 V8.1.7.4

� Oracle 9i Standard/Enterprise
Release 2 V9.2.0.5

� Microsoft SQL Server 2000 Enterprise
SP3

� Microsoft SQL Server 2000 Standard
Edition

Windows 2000 server side Requirement description

 Chapter 2. Migration strategy 25

For Windows 2000 development environments, the minimum requirements are
listed in Table 2-3:

Table 2-3 Windows requirements for Branch Transformation Toolkit development

2.2.2 Additional requirements
Depending on the framework services you use, you might require other hardware
and software to support the financial devices. The additional requirements shown
in Table 2-4 apply to the type of workstation (client, server, or development) that
accesses the financial device.

Portal Connector IBM WebSphere Portal for Multiplatforms
V5.1

Windows 2000 development Requirement description

Processor PIII 500 MHz or higher recommended

Memory 1024 MB recommended

Hard drive 2 GB minimum for WebSphere Studio
Application Developer; 4.5 GB minimum
for WebSphere Studio Application
Developer Integration Edition

Display TCP/IP

Operating system 100 MB Ethernet recommended

Integrated development environment One of the following:

� IBM WebSphere Studio Application
Developer V5.1.1

� IBM WebSphere Studio Application
Developer Integration Edition V5.1.1

Browser � Netscape Communicator 7.02 or later
with Java Plug-in 1.3.1 or later

� Internet Explorer 6.0 SP1

Windows 2000 server side Requirement description

26 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Table 2-4 Additional requirements for framework services

2.3 Migration stages
After you make the decision to migrate your toolkit application from Branch
Transformation Toolkit 4.3 to version 5.1, you should come up with a detailed
plan that includes all the required phases. This section details the different
stages of the migration process and identifies all the important steps. The
migration process is divided into three stages:

1. The premigration stage, where you determine the scope of the migration
effort required

2. The migration stage, where you perform the code and infrastructure migration

3. The post-migration stage, where you tune the migrated solution for scalability
and performance

Framework component Additional requirements

J/eXtensions for Financial Services Any financial printer, magnetic stripe
reader/encoder, or check reader with a
device service that is compliant with the
J/XFS™ specification

eXtensions for Financial Services Any financial printer, magnetic stripe
reader/encoder, or check reader with a
device service that is compliant with the
J/XFS specification

LANDP® MSR/E Device Service Any magnetic stripe reader/encoder
supported by the LANDP MSRE47##
server

 Chapter 2. Migration strategy 27

Figure 2-1 shows the three migration stages.

Figure 2-1 Stages of migration

2.3.1 Premigration stages
Before the migration, assess the architecture, infrastructure, process flows, and
code functionality of your Branch Transformation Toolkit 4.3 application, besides
all ongoing information technology projects in your organization. The goal of the
premigration stage is for you to gain a deep understanding of your original
application so that you can determine your migration and redevelopment
approach.

The premigration details are described in 2.4, “Things to do before migration” on
page 29.

2.3.2 The migration stage
In the migration stage, the fundamental migration efforts are performed. The
basic work can be done by the migration tool, which can also be customized to
meet your specific migration needs. The migration tool is embedded in the
Branch Transformation Toolkit. It has a graphical presentation and is easy to
use. The primary migration tasks are centered around reengineering the
application so that it runs in Branch Transformation Toolkit V5.1. You should also
redevelop the application code to comply with the new features and the
technology provided by the new version of the Branch Transformation Toolkit.
The exact way in which you carry out the migration tasks will depend on the
migration and redevelopment approach you defined in the premigration stage.

MigrationPre-migration

Migration
scope

Migration
analysis

Transition
strategy

Infrastructure
migration

Code
migration

Manual
fixing

Post-migration

Tuning
• Presentation
• Business logic
• Performance
• Availability

28 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2.3.3 Post-migration stage
Because of the new technologies that have been adopted in the latest version of
the Branch Transformation Toolkit, some components are dramatically changed.
The migration tool does not migrate everything in the old version of your
application, including the logic inside the application, server operation, actions of
flow process and services, and so on. For these application contents, you must
perform manual modification and redevelopment. The server side event
mechanism and communication services are also changed in V5.1 of the Branch
Transformation Toolkit, and the migration tools do not support automatic
migration of these features.

After completion of post-migration activities, the migrated application should run
in the Branch Transformation Toolkit 5.1 runtime environment. Although the
migration has taken place in effect, you must make sure that the application
performance meets at least the migration objectives, in addition to making the
code run. Some essential tuning at the code and runtime levels is required.

Because each migration scenario is unique to each different site, we do not tell
you exactly what your migration strategies should be in this book. Instead, we
walk you through the process of identifying what you must do to set the migration
scope, and conclude by providing a set of recommendations that are helpful in
planning and executing a migration part.

Details of these guidelines are discusses in the remaining chapters of this book.

2.4 Things to do before migration
There are several activities that should be undertaken at the beginning of a
migration effort. The assessment of migration complexity is an important step
that should not be skipped, since it can be used to set the stage for the steps that
follow. Premigration activities include:

� Assessment
� Education
� Installation of a new development environment
� Installation of a runtime environment
� Research
� Code preparation
� Planning

 Chapter 2. Migration strategy 29

2.4.1 Migration assessments
Before attempting migration, assess the efforts. The time required for migrating
an application is determined by a number of factors. The most significant ones
are the complexity of the application and the runtime configuration.

Generally, assessing the migration complexity for a single business logic
processor running on a single runtime configuration, is likely to take a day or two.
A more complex application running in a complex runtime configuration involving
both presentation and business process requires more time. As a guide for your
time assessments, allow for the following timeframes:

� One day to assess each logic processor
� One to two days to assess the runtime environment
� Two to three days to assess documentation discoveries
� One day to assess the build and deploy processes and for general education

2.4.2 Education
Reengineering is not enough for a migration to work. Education and training is
needed for your employees to work with the Branch Transformation Toolkit 5.1.
The amount of training needed depends on the nature of the competitive product
that the new version of Branch Transformation Toolkit is replacing. There are a
number of different skill sets to consider. In particular, you should think about the
following:

� J2EE architecture and coding
� The new solution architecture of a toolkit application
� New concepts and technologies
� Runtime environment configuration
� Enhanced components in the new version of Branch Transformation Toolkit

A new development environment also comes with the new version of Branch
Transformation Toolkit. Developers familiar with the old version of the Branch
Transformation Toolkit will benefit from some amount of tools training.

In any case, it is best that specific needs are assessed against actual skills and
the gaps filled. Migration provides a good opportunity to assess the existing skills
of your team and fill the gaps before moving forward. The amount of training you
need depends on your goals. In general, we recommend that you meet the
following objectives through classroom education:

� Leverage the core IBM application development platform.

� Make developers more familiar with tool capabilities.

� Stay in synch with current and evolving standards, open source, and platform
evolution.

30 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� Provide a path forward for clients with limited J2EE development experience,
who must, at the same time, develop transactional business applications
quickly.

When migrating to Branch Transformation Toolkit 5.1, assume that classroom
education will take at least a week for developers already familiar with version
4.3. Expect that developers will require at least a few weeks to become familiar
with the new environment and return to full productivity.

2.4.3 Installation of the new development environment
Before any application code is modified, a suitable development environment
must be installed. For Branch Transformation Toolkit 5.1, you can choose either
WebSphere Studio Application Developer or WebSphere Studio Application
Developer Integration Edition.

Whatever your chosen development environment, you should spend some time
researching, installing, and configuring source code management tools.

There are new hardware and software requirements for the development
environments of Branch Transformation Toolkit 5.1. You should first read the
requirements and ensure that your environments match.

Although the Branch Transformation Toolkit V5.1 has major changes compared
with version 4.3, some operation concepts remain similar. If you are already
familiar with version 4.3 and have general knowledge of J2EE, you should
become comfortable with the changes relatively quickly.

Your development environments comprise more than just an integrated
development environment (IDE). Other tools that you use are also important and
must be reviewed as part of the migration. In some cases, new versions of these
development tools might suffice or complete replacements might be required.
Other aspects to consider as part of the migration effort include testing the
servers, the development process, and the development practices and
methodologies.

Research might be required to handle special considerations such as the use of
special tools. A development environment also comprises testing the servers,
databases, and other systems. These must also be considered a part of the
migration effort. Developers should not immediately be expected to be 100%
productive in the new environment. They will need some time to acquaint
themselves with the changes.

 Chapter 2. Migration strategy 31

2.4.4 Installation of a runtime environment
As part of the migration effort it is necessary to install a new Branch
Transformation Toolkit runtime environment for application execution purposes.
As part of the installation, runtime environment working staff will learn the
nuances of the new version of Branch Transformation Toolkit 5.1.

Even the most well-written code will not run without a properly configured
application server. Setting up good production and testing environments is a key
requirement for success. Configuring the production environment can be quite
complex, so starting from scratch and installing and configuring a Branch
Transformation Toolkit runtime environment might take significant time.

Even in normal conditions, the time taken to set up a runtime environment is not
short. Therefore, the correct migration approach requires that you interfere with
the current system as little as possible. The time and complexity involved in
setting up the new runtime depends on the following factors:

� How much additional hardware can you purchase?
� How is the existing environment configured?
� Does the existing environment provide failover support?

We suggest that you use a trial migration of a system runtime environment to
learn the ropes and make mistakes. Based on the lessons learned through this
migration, formulate a plan to effect the entire migration and test that plan against
the QA environment. If possible, you should also consider migrating your
configuration in vertical slices, that is, measure the time required to migrate a
single slice and use that information to estimate the entire migration effort.

2.4.5 Research
As described in 2.4.1, “Migration assessments” on page 30, research is typically
a part of every migration assessment effort. For example, migrated applications
sometimes use code libraries provided by a third party. You should confirm that
these libraries will function on Branch Transformation 5.1 or that there are newer
versions of these libraries. In any case, the third-party vendor can be required to
provide some kind of certification that these libraries will function in the new
environment.

In the same way, some functions in the old toolkit application might have been
replaced with other mechanisms or maybe done in a different manner in the new
version. You should therefore study the current technology in Branch
Transformation Toolkit V5.1 to decide on the right transition path to use in your
migration.

32 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2.4.6 Code preparation
The amount of time you must allocate to coding practices is a significant factor to
consider when evaluating migration complexity. To migrate application code
more easily and more efficiently, we recommend that you refactor the code
before migration. If you apply the refactoring discipline properly, you can handle
code migration more easily because the code will be simple and clean.
Regardless of the development methodology you choose, refactoring improves
the overall code quality. Migration is good time to reexamine and refactor your
code.

To reduce the effort of migration work, remove the code that is not used. If you
have completed the refactoring process before migration, it becomes easier to
exclude the code that is not a part of the migration effort. The practice of
removing what you do not use can also be extended to the runtime environment.
Unused resources such as data sources should be removed as a matter of
practice.

Coding practices can have a direct impact on the complexity of migration. Well
designed and architected coding is generally easier to understand and modify.
Layered architectures are a huge win when change is required.

The new version of Branch Transformation Toolkit also supports more recent
versions of the relevant specifications. In anticipation of an upcoming migration,
you can update the existing code to conform to the most recent version. Branch
Transformation Toolkit 5.1 supports multiple versions of the related standards
such as J2EE and BPEL, but in anticipation of a migration, you may consider
updating your application to comply with the most recent versions of the
specifications that run on Branch Transformation Toolkit V5.1.

2.4.7 The migration plan
The migration plan is what should guide you during the entire migration process.
The various tasks at every stage should be captured and documented in the plan
and we recommend that all migration activities follow the plan.

However, the migration plans should also be flexible. As part of the migration
assessment, you should document the risks and unknowns that can impact your
plan. Assume that uncertain issues will occur during the migration process. For
example, a common mistake is factoring in some time for testing but not enough
time for fixing problems. Be sure to allocate enough time in the plan to fix the
problems encountered.

Scheduling is an important part of the planning process. It helps chain migration
tasks together. Remember that many tasks can be completed in parallel.

 Chapter 2. Migration strategy 33

Figure 2-2 shows the skeleton of a high-level migration schedule. Use this as a
guide to make your own schedule appropriate to the situation for your site.

Figure 2-2 Sample migration schedule

Documentation is an important part of the planning process. It helps make things
simple by separating the description of tasks from the scheduling of their
application. There are a number of popular ways in which to capture this
information. One approach is to break the migration problem into
reasonable-sized tasks and then compose a task flow, for example, consider
education as a single task. Estimate the effort required and identify the
prerequisite tasks and post conditions that should be met for each task.

A sample collection of project tasks is shown in Table 2-5. The tasks identified in
this sample are for our specific migration effort. Table 2-5 is only a sample task
list. Use it as a skeleton or a template for a your specific Branch Transformation
Toolkit project plan. Your task list will be different, depending on your project and
environment. Set the prerequisites for every task.

Table 2-5 Migration task list

Install
development
environment

Install
test

environment

Remediate

Educate

Prepare
code

Assess Migrate Test Deploy

C
heck point

C
heck point

C
heck point

Task ID
number

Task Prerequisite
task number

Comments

1 Assessment

2 Education 1

3 Install development
environment

2

4 Install deployment
environment

2

5 Code preparation 3

34 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Table 2-5 on page 34 shows only a skeleton for documenting tasks. After you
have identified the migration tasks, the next step is to estimate the required time
to complete each task. In addition, estimate the number of resources needed for
each task and consider if the documentation needs more execution details.

Use the captured task information to generate a schedule. The prerequisites will
help you organize the tasks, set completion dates, and allocate resources for the
migration effort. In this phase of a migration project, use multiple project
management software tools to assist with planning and scheduling the tasks.

2.5 Elements of migration
Migration to Branch Transformation Toolkit V5.1 will have an impact on several
aspects of your business. The toolkit applications are far more than just code.
Along with the application code, there are development environments, build
processes, runtime environments and other aspects that must be considered as
part of a migration. At the end of the migration process, the migrated application
should run on a production environment, the application should be built and
deployed, and developers have to be productive with the new development
environment. It is important to consider all the following elements when doing a
migration:

� Application code
� Development environment
� Installation of development environment
� Testing
� Runtime environments
� Deployment processes

6 Migrate infrastructure 5

7 Migrate code 6

8 Manual fixing 7

9 Modify presentation layer 8 Post-migration activities

10 Modify business logic layer 8 Post-migration activities

11 Modify client side 8 Post-migration activities

12 Test 11

13 Deployment 4, 12

Task ID
number

Task Prerequisite
task number

Comments

 Chapter 2. Migration strategy 35

This part of the chapter discusses each of these elements and considers their
place in the entire migration process. In some cases, such as migration
prerequisites, we have provided only abstract guidance. However, for some
elements, we have provided detailed instructions.

2.5.1 Application code
For a Branch Transformation Toolkit application, the migration from version 4.3
to version 5.1 will have a significant impact on the application code. The exact
workload required for code modification depends on the technology adopted by
the application. In some cases, deprecated APIs used in the application have to
be replaced with new ones.

During the migration process, your staff can follow standard, iterative
development practices. Generally, we assign a special team to carry out the
migration work. However, we can also involve the application developers.

2.5.2 Development environment
Development environments change over time. The Branch Transformation
Toolkit is based on the J2EE standard. The development environment of toolkit
applications is integrated with WebSphere Studio Application Developer or
WebSphere Studio Application Developer Integration Edition, both of which are
based on the Eclipse Platform.

Development environments comprise more than just the IDE you use. The
changes necessary for a successful migration will impact several aspects of your
development environment because the development platform and the toolkit
plug-ins have changed dramatically between Branch Transformation Toolkit V4.3
and V5.1. You should also think about how migration will affect other areas of
your development environment such as test servers, or development practices
and methodologies.

36 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 2-3 shows the main tools provided as part of the Branch Transformation
Toolkit development environment, including the graphical builder, the CHA editor,
and the formatter editor.

Figure 2-3 Branch Transformation Toolkit development tools

Branch Transformation Toolkit 5.1 provides a number of tools that support the
development of applications. All the tools are plug-ins of WebSphere Studio
Application Developer or WebSphere Studio Application Developer Integration
Edition. The key development tools provided by Branch Transformation Toolkit
include:

� The Business Process Wizard

This provides a GUI to help extend your business processes to take
advantage of toolkit-specific entities.

Note: This tool is only available when you use WebSphere Studio
Application Developer Integration Edition.

 Chapter 2. Migration strategy 37

� The Graphical Builder

This provides a set of tools to define the entities required by the applications
and to distribute the runtime files. It provides the development environment
throughout the development cycle of toolkit applications. It also acts as a
portal from which you can start other tools provided by the toolkit.

� The CHA Editor and Formatter Editor

This provides user-friendly interfaces for creating or maintaining the
definitions needed by the applications in the application logic layer.

Note: Some functions of the Graphical Builder are only available when you
use the Integration Edition of WebSphere Studio Application Developer.

38 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� The Struts Tools Extension

This provides a GUI to help you extend your Struts configuration files to take
advantage of toolkit-specific entities. Figure 2-4 shows an outline of the Struts
extension.

Figure 2-4 Struts extension tool

Because Branch Transformation Toolkit 5.1 supports two types of development
platforms, there are two sets of plug-ins, including different files:

� Plug-ins forWebSphere Studio Application Developer 5.1.1

These plugins include components that do not depend on the features of
WebSphere Studio Application Developer Integration Edition 5.1.1.

If you haveWebSphere Studio Application Developer5.1.1 installed on your
system, the toolkit installation wizard uses WebSphere Studio Application
Developer as your development environment. After the installation, the wizard
decides that WebSphere Studio Application Developer is your development
environment and automatically copies the plug-ins for WebSphere Studio

 Chapter 2. Migration strategy 39

Application Developer 5.1.1 to the wstools/eclipse/plug-ins directory of the
WebSphere Studio Application Developerinstall location.

� Plug-ins for WebSphere Studio Application Developer Integration Edition
5.1.1

These plug-ins include components that do not have dependencies on the
features provided by WebSphere Studio Application Developer Integration
Edition 5.1.1, such as plug-ins for the Business Process Wizard.

If you have WebSphere Studio Application Developer Integration Edition
5.1.1 installed on your system, the toolkit installation wizard takes
WebSphere Studio Application Developer Integration Edition as your
development environment, even if you also have WebSphere Studio
Application Developer installed. After the installation, the wizard decides that
WebSphere Studio Application Developer Integration Edition is your
development environment and automatically copies the plug-ins for
WebSphere Studio Application Developer Integration Edition 5.1.1 to the
wstools/eclipse/plug-ins directory of the WebSphere Studio Application
Developer Integration Edition 5.1.1 install location.

If neither WebSphere Studio Application Developer 5.1.1 nor WebSphere Studio
Application Developer Integration Edition 5.1.1 is installed on your system, you
should copy the plug-ins to the wstools/eclipse/plug-ins directory after you install
WebSphere Studio Application Developeror WebSphere Studio Application
Developer Integration Edition. Plug-ins for WebSphere Studio Application
Developercan be found in the <toolkit_root>/plug-ins/wsad51 directory, and
plug-ins for the WebSphere Studio Application Developer Integration Edition can
be found in the <toolkit_root>/plug-ins/wsadie51 directory.

Apart from the development tools listed above, the toolkit also provides a
migration tool to help you migrate your toolkit applications developed with
version 4.3 of the toolkit to the new version 5.1 architecture.

2.5.3 Installation of development environments
To set up the development environments, install the required tools on your
preferred development workstation so that you can develop applications based
on Branch Transformation Toolkit 5.1.

40 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Installing the Branch Transformation Toolkit
To set up your development workstation, perform the following tasks:

1. According to your business need, first install either WebSphere Studio
Application Developer or WebSphere Studio Application Developer
Integration Edition.

2. Insert the Branch Transformation Toolkit CD into a drive on the workstation
and browse the CD. If you want to install Branch Transformation Toolkit 5.1
for Windows, run C55HDML.exe from the Windows platform directory on the
installation CD. If you want to install Branch Transformation Toolkit 5.1 for
Linux, run C55HEML.bin from the Linux platform directory. Either command
starts the Installation Wizard for Branch Transformation Toolkit.

During the installation, the Installation Wizard checks for previous versions of
the Branch Transformation Toolkit already installed on your system. Version
5.1 can coexist with version 4.3. If you already have version 5.1 installed, the
Installation Wizard displays a warning that you already have version 5.1
installed. If you continue with the installation, your previous installation of
version 5.1 will be overridden.

The Installation Wizard also checks for the edition of WebSphere Studio you
have installed. If you have installed WebSphere Studio Application
Developer, the Installation Wizard installs the toolkit components designed for
WebSphere Studio Application Developer and those for WebSphere
Application Server. If you have WebSphere Studio Application Developer
Integration Edition installed, the Install Wizard installs the toolkit components
designed for WebSphere Studio Application Developer Integration Edition,
and prompts you on which set of runtime components you want to install,
either the components for the WebSphere Application Server or the
components for WebSphere Business Integration Server Foundation.

Notes: The physical machine must comply with the requirements listed in 2.2,
“Hardware and software requirements” on page 23.

The following procedure describes how to install the Branch Transformation
Toolkit 5.1 on top of WebSphere Studio Application Developer or WebSphere
Studio Application Developer Integration Edition. Each functional unit is
contained in its own JAR file to provide greater flexibility in both the
development and runtime environments. Consider reviewing functional units,
packages, and dependencies to decide which functional units you need in
order to develop your application.

You can add or remove functional units at any time, provided you account for
their corequisite functional units, that is, functional units that must also exist on
the system at the same time.

 Chapter 2. Migration strategy 41

Table 2-6 shows the details of the directories created by the Branch
Transformation Toolkit installation program.

Table 2-6 Branch Transformation Toolkit installation directories

Directory name Description of contents

dbtools Scripts to manage database tables for the CHA
component

desktop Desktop DTD file

doc The Branch Transformation Toolkit documentation
plug-ins for WebSphere Studio Application Developer
Integration Edition

plug-ins � Visual beans plug-in for WebSphere Studio
Application Developer Integration Edition

� Eclipse Modeling Framework (EMF) plug-in

� Graphical Builder plug-in

� Struts Tools Extensions plug-in

� CHA Editor plug-in

� Format Editor plug-in

� Business Process Wizard plug-in

� Migration Tool plug-in

ear EAR files to provide the infrastructure for the CHA, CHA
formatter service, and Service Infrastructure
components of the toolkit. You can use the EARs to build
applications on the Branch Transformation Toolkit 5.1.

jars The Branch Transformation Toolkit code separated into
various JARs according to the functional unit to which the
code belongs. A solution built on the Branch
Transformation Toolkit 5.1 can use the JARs for the
functional units that it is using. Check the functional units,
packages, and dependencies for a listing of the JARs
and their contents and co-requisites.

samples EAR files to run the sample applications provided by the
Branch Transformation Toolkit 5.1 in the WebSphere
Studio Application Developer workbench. This directory
also contains the source code of the samples.

services Runtime files that are needed by some of the services of
the framework.

42 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 2-5 shows a view of the Branch Transformation Toolkit installation
directories.

Figure 2-5 A view of the BTT installation directories

3. Start WebSphere Studio Application Developer.

source Source code of selected Branch Transformation Toolkit
5.1 components to provide a better understanding of the
functional units. This helps in tasks such as extending
the framework and reduces the development cycle. The
source code must not be modified.

Java doc Java reference documentation

Directory name Description of contents

 Chapter 2. Migration strategy 43

4. Set some preferences before you import the Branch Transformation Toolkit
V5.1 Java source:

– To work with complex projects, use the source folders as source
containers instead of creating packages directly inside the project. To do
this, create source folders as children of the project and create the
packages inside these source folders. To automate this, select
Window → Preferences. Expand the Java node and select the New
Project node. Enable the Folders check box, as shown in Figure 2-6.

Figure 2-6 Source and output folder preferences

– To develop with Branch Transformation ToolkitV5.1, add the framework
functional units, the JAR files containing the classes, to the application

44 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

classpath. You can use different approaches for this. However, you should
consider the impact of the class loader policies.

We recommend that you add an overall classpath variable named BTT to
point to the root directory of the Branch Transformation Toolkit installation.
To do this, perform the following steps:

i. Select Window → Preferences.

ii. Expand the Java node and select Classpath Variables.

iii. Click New and in the Name entry field, enter BTT.

iv. In the Path entry field, type the path where the Branch Transformation
Toolkit is installed, as shown in Figure 2-7.

v. Click OK.

Figure 2-7 Creating a classpath variable

 Chapter 2. Migration strategy 45

In the same way, add another classpath variable, for example,
BTT_EXTERNAL to point to the external dependencies. To make the external
classpath variable work, all the required external JARs must be in the
directory to which this variable points. Using classpath variables makes it
easier for you to select the Branch Transformation Toolkit JAR files for
your Java project.

Another approach is to define a classpath variable for each functional unit
available in the product. Each classpath variable points to the concrete
JAR associated with the functional unit.

5. Create a Java project for an application by performing the following tasks:

a. Select File → New → Project.

b. Select Java in the left panel and then select Java Project in the right
panel. Click Next.

c. Type the name of the project, such as BaseSample, and click Finish.

6. When deploying an application, you must embed Branch Transformation
Toolkit5.1 functional units along with the required application resources,
inside the J2EE EAR file. The Branch Transformation Toolkit V5.1 uses
functional units to provide a coherent structure of JAR files you use to build an
application. The JARs in the functional units contain the required set of
classes for a given execution environment.

To make the functional units available to your project, you can either add the
compiled JARs to the project's classpath or you can import the JARs into the
workspace. You can choose the second option if you want to embed the JARs
and resources into your application when, for example, it is self-contained and
independently deployed.

For either option, you add or import the JARs and their corequisites needed
for the application, only to optimize the deployment and distribution of the
application.

If you are unsure about the actual dependencies among the JARs, add all the
JARs that you believe might be needed for your application. You can always
remove the unwanted JARs later. To get an idea of the JARs you should
select, browse the list of JARs used by the sample applications shipped in the
<Toolkit root>/samples folder. For example, if you open the
BTTHtmlSampleWeb.war file that is inside the BBTTHtmlSample.ear file, you

Note: The rest of this procedure and the other procedures assume that
you are using our recommended approach to setting the classpaths.

46 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

will see that the following functional units have been used to build the
application:

– BTTBase (bttbase.jar)
– BTTInvoker (bttinvoker.jar)
– BTTJavaClient (bttjavaclient.jar)
– BTTServerBean (bttsvrbean.jar)
– BTTSessionManagement (bttsm.jar)
– BTTStrutsExtension (bttstruts.jar)
– BTTHTMLSampleEJB (BTTHTMLSampleEJB.jar)

To add the required JARs to the project's classpath, perform the following
tasks:

a. Right-click the project and select Properties.

b. Select JavaBuildPath and then select the Libraries tab.

c. Select Add Variable and, in the New Variable Classpath Entry window,
select the classpath variable (BTT) and click Extend, as shown in
Figure 2-8.

 Chapter 2. Migration strategy 47

Figure 2-8 Add JARs by extending a variable

d. In the Variable Extension window, expand the jars directory and select the
JAR you want to add to your project. Click OK.

e. Repeat this procedure for each JAR file you want to add. Keep in mind the
dependencies that a JAR or functional unit can have.

After you have installed the Branch Transformation Toolkit V5.1 in WebSphere
Studio Application Developer Integration Edition, start developing Branch
Transformation Toolkit solutions. For a high-level overview of the development
process and details about where to get more information, refer to Chapter 8,
“Building an application with Branch Transformation Toolkit V5.1” on page 225.
For examples of Branch Transformation Toolkit based applications, including how
to install and run them on the various supported platforms, refer to the
documentation for Java and HTML sample applications that ship with the Branch
Transformation Toolkit.

48 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Setting up the CHA Editor
The CHA Editor for theBranch Transformation Toolkit is a WebSphere Studio
plug-in. CHA Editor configuration files or CHA Editor files help you create CHA
elements with a GUI.

If you installed the toolkit before installing the WebSphere Studio Application
Developer Integration Edition, copy the following plug-in files to the
wstools\eclipse\plugins\ folder of your WebSphere Studio installation folder:

� com.ibm.btt.tools.common_5.1.0
� com.ibm.btt.tools.chaeditor.model.emf_5.1.0
� com.ibm.btt.tools.chaeditor_5.1.0

To create a CHA Editor file, perform these tasks:

1. Start WebSphere Studio Application Developer Integration Edition.

2. Create a simple project to contain the CHA Editor files.

3. From the File menu, select File → New → Other.

4. In the dialog box, select IBM Branch Transformation Toolkit in the left
panel.

5. In the right panel, select CHA Editor file, starting the CHA Editor
Configuration Wizard.

6. Select the project to hold the CHA Editor’s files. Usually, this is the project file
for the application you are creating.

7. In the file name field, enter the name of the editor’s configuration file. The file
must have the .chae extension.

8. Click Finish.

9. From the menu bar, select Window → Show view → Other.

 Chapter 2. Migration strategy 49

10.In the window that opens, expand IBM Branch Transformation Toolkit, and
select the CHA Editor views you want to show.

The wizard then creates the configuration file and the dsedata.xml,
dsetype.xml, and dsectxt.xml files in the project folder. It then launches the
CHA Editor, as shown in Figure 2-9.

Figure 2-9 Set up CHA editor file

Setting up the Format Editor
The Format Editor for the Branch Transformation Toolkit is a WebSphere Studio
plug-in. Format Editor configuration files or Format Editor files help you create
formatters with a GUI.

If you installed the toolkit before installing WebSphere Studio Application
Developer Integration Edition, copy the following plug-in files to the
wstools\eclipse\plugins\ folder of your WebSphere Studio installation folder:

� com.ibm.btt.tools.common_5.1.0
� com.ibm.btt.tools.fmteditor_5.1.0

50 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� com.ibm.btt.tools.chaeditor_5.1.0

To create a Format Editor file, perform these tasks:

1. Start WebSphere Studio Application Developer Integration Edition.

2. Create a simple project to contain the Format Editor files.

3. From the File menu, select File → New → Other.

4. In the dialog box , select IBM Branch Transformation Toolkit in the left
panel.

5. In the right panel, select Format Editor file. This starts the Format Editor
Configuration Wizard, as shown in Figure 2-10.

6. Select the project to contain the Format Editor's files. Usually, this is the
project file for the application you are creating.

Figure 2-10 Format editor wizard

 Chapter 2. Migration strategy 51

7. In the file name field, enter the name of the editor's configuration file. The file
must have the .fmte extension.

8. Click Finish.

9. From the menu bar, select Window → Show view → Other.

10.In the window that pops up, expand IBM Branch Transformation Toolkit,
and select the Format Editor views you want to show, as shown in
Figure 2-11.

Figure 2-11 Format editor views

The wizard then creates the configuration file and the dsefmt.xml file in the
project folder. It then launches the Format Editor.

Note: Each Format Editor file works with a CHA Editor file to provide the
formatters for the CHA elements described in the CHA Editor file. Define
the CHA Editor file name in the configuration of the Format Editor file to
ensure that they can work together.

52 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Setting up the Business Process Wizard
The Business Process Wizard for the Branch Transformation Toolkit is a
WebSphere Studio plug-in. The Business Process BTT Wizard provides a GUI to
help you extend your business processes to take advantage of the BTT Abstract
Layer.

If you installed the toolkit before installing WebSphere Studio Application
Developer Integration Edition, copy the following plug-in files to the
eclipse\wstools\plugins\ folder of your WebSphere Studio installation folder:

� com.ibm.btt.tools.common_5.1.0
� com.ibm.btt.tools.bp_5.1.0

Setting up the Struts Tools Extensions
The Struts Tools Extensions for the Branch Transformation Toolkit is a
WebSphere Studio plug-in. The Struts Tools Extensions provides a graphical
and easier way to work with toolkit-extended Struts configuration files.

If you installed the toolkit before installing the WebSphere Studio Application
Developer Integration Edition, copy the following plug-in files to the
wstools\eclipse\plugins\ folder of your WebSphere Studio installation folder:

� com.ibm.btt.tools.common_5.1.0
� com.ibm.btt.tools.struts_5.1.0
� com.ibm.btt.tools.webdiagrameditor_5.1.0

Setting up the Graphical Builder
The Graphical Builder for the Branch Transformation Toolkit is a WebSphere
Studio plug-in. The Graphical Builder integrates all the key development tools
and provides application visualization, integrated development, and seamless
deployment techniques that can be applied to the full life cycle of your application
development.

If you installed the toolkit before installing the WebSphere Studio Application
Developer Integration Edition, copy the following plug-in files to the
wstools\eclipse\plugins\ folder of your WebSphere Studio installation folder:

� com.ibm.btt.tools.common_5.1.0
� com.ibm.btt.tools.chaeditor.model.emf_5.1.0
� com.ibm.btt.tools.chaeditor_5.1.0
� com.ibm.btt.tools.fmteditor_5.1.0
� com.ibm.btt.tools.fmteditor.model.emf_5.1.0
� com.ibm.btt.tools.struts_5.1.0
� com.ibm.btt.tools.webdiagrameditor_5.1.0
� com.ibm.btt.tools.bp_5.1.0
� com.ibm.btt.tools.gw_5.1.0

 Chapter 2. Migration strategy 53

� com.ibm.btt.tools.gw.model.emf_5.1.0
� com.ibm.btt.tools.migration_5.1.0

Setting up the migration tool
The migration tool is a WebSphere Studio Application Developer plug-in that
helps you migrate your version 4.3 toolkit applications to version 5.1 applications.

If you installed the toolkit before installing the WebSphere Studio Application
Developer Integration Edition, copy the following plug-in files to the
wstools\eclipse\plugins\ folder of your WebSphere Studio installation folder:

� com.ibm.btt.tools.common_5.1.0
� com.ibm.btt.tools.chaeditor.model.emf_5.1.0
� com.ibm.btt.tools.chaeditor_5.1.0
� com.ibm.btt.tools.fmteditor_5.1.0
� com.ibm.btt.tools.fmteditor.model.emf_5.1.0
� com.ibm.btt.tools.struts_5.1.0
� com.ibm.btt.tools.webdiagrameditor_5.1.0
� com.ibm.btt.tools.bp_5.1.0
� com.ibm.btt.tools.gw_5.1.0
� com.ibm.btt.tools.gw.model.emf_5.1.0
� com.ibm.btt.tools.migration_5.1.0

2.5.4 Testing
Testing is an essential part of the migration process and cannot be overlooked.
Subtle changes can be introduced in your application’s behavior when you use
new software versions. Testing is the only way to discover any possible
problems. Normally, the migrated project already has an existing test scheme in
place, and in most cases, this can be used with little or no modification to test the
migrated application. Testing a migration effort can be executed generally in
much the same way as for a new release of your application, even when the
migration has resulted in significant changes to the application infrastructure or
core behavior.

New software specifications often introduce clarifications of details covered in
older versions and this can translate into subtle changes in application behavior.
As part of a migration, a full regression test of your application code might be
necessary to ensure that subtle changes have not introduced errors into your
application. The specifications are often the best source of information about
changes that have occurred. You should carefully study the specification
changes when planning and executing migration testing.

54 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2.5.5 Runtime environment
The runtime environment of toolkit applications is based on WebSphere
Application Server or WebSphere Business Integration Server Foundation.

Runtime environment package structure
Depending on the development environment you have on your workstation, the
Branch Transformation Toolkit 5.1 installation wizard decides the runtime
environment to be installed. For the runtime environment, there are two sets of
runtime data and different files that are used. These are:

� Runtime data for WebSphere Application Server 5.1.1

This runtime data does not include components that have dependencies on
the features provided by WebSphere Business Integration Server
Foundation.

Whether you have WebSphere Studio Application Developer Integration
Edition installed on your workstation or you have neither edition of the
application developer installed, the Branch Transformation Toolkit installation
wizard prompts you about whether to install the runtime environment for
WebSphere Business Integration Server Foundation or the runtime
environment for WebSphere Application Server.

� Runtime data for WebSphere Business Integration Server Foundation 5.1.1

This runtime includes components that have dependencies on features
provided by WebSphere Business Integration Server Foundation, such as
business processes, startup beans, work areas, and activity sessions.

If you have WebSphere Studio Application Developer installed on your
workstation, the Branch Transformation Toolkit installation wizard
automatically takes WebSphere Application Server as your runtime
environment and installs the matching runtime data for you.

Installing toolkit applications on a runtime platform
Installing Branch Transformation Toolkit applications on a runtime platform
consists of deploying EAR files on to WebSphere Application Server. Develop a
solution in WebSphere Studio and package the code and resources for the
solution in EAR files. Do the packaging by using WebSphere Studio or the
Application Assembly Tool in WebSphere Application Server.

The Branch Transformation Toolkit 5.1 provides four sample applications that
you can deploy immediately on WebSphere Application Server after you make a
few customizations to adapt the sample applications to your particular
requirements.

 Chapter 2. Migration strategy 55

2.5.6 Deployment processes
Branch Transformation Toolkit 5.1 supports both WebSphere Application Server
and WebSphere Business Integration Server Foundation. After testing an
application, you can deploy the application on any of the server platforms you
have available. For example, to deploy on WebSphere Application Server, the
following procedure describes the basic steps involved in installing your
application. This procedure holds good regardless of whether WebSphere
Application Server is running on a Windows, Linux, or UNIX® platform.

1. Copy external files.

Extract the .war file from your .ear file for the application, and then create a
/dse directory in the right location. Copy all the needed files to the /dse
directory.

2. Create the database and tables.

Create a database and the tables within it by using DB2 commands.

3. Launch the WebSphere Administrative Console.

Use this URL for the Web-based WebSphere Administrative Console:

http://serverName:9090/admin

4. Import the .ear file for the application into WebSphere Application Server.

5. Install the new application and then set the database configuration.

6. Set up JDBC Providers.

7. Create new data sources with JDBC Providers.

8. Run the applications.

Try to run the application of runtime environment configuration as we did during
testing.

56 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Chapter 3. Planning a Branch
Transformation Toolkit
migration

This chapter describes the methodology used for Branch Transformation Toolkit
and discusses migration activities. Details about Branch Transformation Toolkit
programming model and topology are also discussed, besides custom
extensions and limitations encountered during a migration process.

This chapter discusses the following topics:

� 3.1, “Version 5.1 End-to-end programming model” on page 58
� 3.2, “Application packaging and topology” on page 75
� 3.3, “Workload management decisions” on page 78
� 3.5, “Migration considerations for custom extensions” on page 82
� 3.6, “Limitations” on page 85

3

© Copyright IBM Corp. 2006. All rights reserved. 57

3.1 Version 5.1 End-to-end programming model
From the migration point of view, Branch Transformation Toolkit 5.1 is a set of
advanced components designed to provide a technology bridge between Branch
Transformation Toolkit 4.3 applications and pure WebSphere J2EE applications.
The majority of these components allow Branch Transformation Toolkit 4.3
source and designs to be reused in this advanced environment with minimal
recoding.

The Graphical Builder provides a set of tools to define the entities required by the
applications and to distribute the runtime files. It provides a development
environment that can be used through the entire cycle of developing toolkit
applications. It also acts as a portal from where you can start other tools the
toolkit provides.

The Graphical Builder offers an end-to-end programming model that provides the
following benefits:

� Less reliance on high-level programming skills

Using the Graphical Builder decreases the complexity threshold involved in
developing toolkit-based applications. It provides components that are easy to
use in areas ranging from backend connector development to user interface
building blocks. This increases the size of the developer pool and reduces
training costs.

� Enhanced development using a graphical user interface (GUI)

To increase productivity, Branch Transformation Toolkit 5.1 provides
WebSphere Studio Application Developer Integration Edition with an
enhanced GUI. With the help of the Process Editor in WebSphere Studio
Application Developer Integration Edition, developers can visually
choreograph business processes for various applications. They do not have
to spend time working with different interfaces and low-level APIs.
Drag-and-drop tools allow them to define the sequence and flow of
information between different business logic activities. Individual business
logic activities and even entire workflows become building blocks that can be
reused in developing other applications. Further gains in productivity are
possible because runtime support for these new J2EE workflow capabilities is
fully integrated in the application server to deliver a single administration and
deployment environment.

58 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3.1.1 Branch Transformation Toolkit components
This section describes the components that make up the end-to-end architecture
of Branch Transformation Toolkit 5.1.

Branch Transformation Toolkit client
The Branch Transformation Toolkit 5.1 supports two client types. While one
approach uses Java clients, including Java application or Java applets hosted in
Web pages, the other approach uses HTML clients.

� Java clients

The Branch Transformation Toolkit 5.1 does not provide new Java client
components. It supports the Branch Transformation Toolkit 4.3 Java client,
using modified servlets and request handlers in the server side. The server
side modules translate requests from the Java client into a form that is
manageable within the Branch Transformation Toolkit 5.1 server
environment.

The main focus of this support is to ensure that Java clients have a workalike
server environment that can be accessed by existing Java clients without
code changes on the client side. The Branch Transformation Toolkit server
supports the following features:

– A Branch Transformation Toolkit 4.3 compatible Session subsystem

For more details, refer to “Session management” on page 65.

– A Branch Transformation Toolkit 4.3-compatible Event subsystem

For more details, refer to “Events” on page 70.

– Servlets for session establishment, operation execution, event
registration, and event processing

For the Java client, no client code changes are necessary. However,
configuration changes might be needed to change server operation names to
process invoker names. Changes are made to the client/server channels,
request and response handlers, as well as to any classes they interact with,
such as the Branch Transformation Toolkit Context.

� HTML client

The Branch Transformation Toolkit HTML client has been redesigned as a
Struts/JSP framework. The Branch Transformation Toolkit 4.3 processor
(Automaton) is replaced with Struts framework that provides similar
functionality. Branch Transformation Toolkit HTML clients based on
Automation must be migrated to the new Struts environment.

 Chapter 3. Planning a Branch Transformation Toolkit migration 59

Presentation layer components
The presentation architecture comprises several components, which are shown
in Figure 3-1 and Figure 3-2 on page 61. This section describes each component
and how it fits in the overall architecture.

Figure 3-1 Presentation server

� BTT Controller

This is the main driver of the architecture because it is the entry point to the
presentation framework. The BTT Controller provides all the functionalities
needed to handle incoming request data and outgoing response data.

� Base Action

Every action that requires access to the Common Hierarchical Area (CHA), or
uses the application flow processor, or any toolkit-provided service, must
extend a Branch Transformation Toolkit base action. This action provides a

Struts framework

Multi-
channel

Lifecycle
notification

ValidationBTT
controller

Toolkit Struts Extensions

Config Sub-
Module

Presentation Server

W
S

IF
B

TT Form
atter

60 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

hook into the Struts Action life cycle that allows developers to supply the
business logic and hide the framework’s complexity.

Figure 3-2 Presentation server continued

� Complex Action

In Branch Transformation Toolkit, an action can comprise many closely
related tasks. In Struts, an action can embody a number of tasks. These tasks
are implemented as methods within a concrete action, for example,
BTTComplexAction, that extends BTTBaseDispatchAction. The method
signatures are similar to the execute() method in regular actions.

� Base Form Bean

One of the actors providing the Branch Transformation Toolkit base action
with access to the CHA, is the Branch Transformation Toolkit base form bean.
This form bean provides a facade that communicates with the underlying
CHA implementation, regardless of the technology used.

Struts Framework

Toolkit Struts Extensions

Presentation Server

JSPs BTT Base
Form

BTT Base
Action

BTT WSIF
Action

BTT
Complex

Action

BTT Base
Action

BTT
Context

W
S

IF
B

TT Form
atter

 Chapter 3. Planning a Branch Transformation Toolkit migration 61

Alternatively, framework users can provide access to their own data models,
leveraging on their existing designs and implementation, by using
technologies such as WebSphere Data Objects (WDO).

� WSIF Access Action

The Web Services Invocation Framework (WSIF) access action provides the
interface necessary for the Struts-based presentation layer to talk to the
backend business process service architecture.

� WSIF-to-Context Formatter

One important component in achieving seamless invocation of Web services
through WSIF is the ability to map data from the context to a WSIF message
and back.

As part of initiating a WSIF call to a Web service, the WSIF Access Action, as
part of its processing logic, delegates mapping data to and from the context to
the WSIF-to-Context formatter. It does so twice, first when it tries to map data
from the context to the WSIF outgoing message just before the call to
operation on the service, and secondly, upon the return from the call to the
service, in which case the response WSIF message is mapped back to the
context.

� Configuration

The Struts framework provides a way to define application artifacts externally,
namely, in a file referred to as struts-config.xml. This file is loaded when the
framework is initialized and its in-memory representation is available for
read-only access.

In order to externally configure support for extensions to the Struts
framework, the struts-config.xml file's grammar is extended to include CHA
configurations, WSIF service access parameters, formatter definitions,
condition flow definition, and so on.

At runtime, the BTTActionServlet reads the extended configuration file and
makes it available in-memory for the different components of the application
to consume.

� JSP Context Access & Tag Libraries

Not explicitly shown in Figure 3-1 on page 60 and in Figure 3-2 on page 61 is
the need to provide some basic constructs that help developers to author
toolkit-specific JSPs. This part of the architecture comes from the inherently
heavy use of the presentation context within JSPs. In Branch Transformation
Toolkit 4.3, the JspContextService gives a user full access to the context
through a proxy. This pattern of use necessitates the preservation of the
Branch Transformation Toolkit 4.3 JspContextService to access the context
from within JSPs.

62 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Additional constructs in the form of tag libraries are also needed to ease JSP
development efforts. These tag libraries will, by extending Struts tag libraries,
share the functionalities of the Struts-provided tag libraries and add the
awareness of the context to those constructs. Tag libraries are also
channel-aware and render the output for the appropriate channel.

� Multi-channel capabilities

The Apache Struts framework does not provide any multi-channel
capabilities. However, Branch Transformation Toolkit provides the ability to
serve up heterogeneous clients through the same controller code. This
multi-channel capability is HTTP-centric and is achieved by hooking in to the
BTT Controller code to add the necessary functionality. The BTT Controller
keeps a list of registered channel handlers and forwards requests to their
appropriate handlers, which in turn render the contents to the clients in their
supported markup.

The main entry into Struts-based application (ActionServlet) keeps track of
one RequestProcessor. This means that although several implementations of
the request processor can be provided, only one can be associated with an
ActionServlet. This leaves you with two options:

– Provide an ActionServlet per channel supported

The disadvantage of this approach is that it provides limited functions.

– Provide a multi-channel aware request processor with a generic channel
registry

This approach is more flexible.

As the WebSphere multi-channel strategy changes over time, the Branch
Transformation Toolkit aligns with the strategies provided by the platform,
whether it is WebSphere Application Server, WebSphere Portal Server, or a
Rich Client Platform.

� Application flow

The flow of the application, including pages to serve and actions to execute,
should be defined externally to the application. The Branch Transformation
Toolkit extends struts-config.xml to specify conditions and branches
according to condition evaluation.

It is important to remember that the condition processor is stateless, and thus
any state information required should be kept in the CHA, and accessed
through the context.

� Sub-modules/Applications

An application can be further subdivided into granular submodules. The
Struts framework provides the ability to define submodules. Each module has
its own configuration, struts-config.xml.

 Chapter 3. Planning a Branch Transformation Toolkit migration 63

The different struts-config files are specified as parameters to the Struts
ActionServlet or its subclass in the web.xml file. Moving from one
subapplication to another is a matter of prefixing the request action Uniform
Resource Identifier (URI) with the subapplication context.

Subapplications share the same ActionServlet instance. When the framework
encounters a context-relative request action URI, it searches for the
subapplication that matches the request prefix. When found, the application
configuration representing the subapplication struts-config is loaded into the
request.

To preserve session management, subapplications are only handled within
the context of one EAR file. The session manager is required to manage data
sharing and access.

� Validation

The validation component provides syntactic (on the JSP) as well semantic
validation, including field, form, and cross-validation to application data. The
validation can either be carried on the client side or the server side.

Client side validation will be in the form of JavaScript and will be
application-specific. On the server side, the framework makes use of the
Apache Common Validation framework to define the validator and externally
configure validation rules and parameters.

� Life cycle notification

The Struts plug-in interface offers a standard way of getting notification from
the framework on server start/stop events. Struts plug-in APIs provide a
notification service for events that map to the servlet container's init() and
destroy() calls on the corresponding ActionServlet instance or its subclasses.

The Struts plug-in mechanism is used to notify Branch Transformation
Toolkit-specific services of the life cycle of the BTTActionServlet instance in
an effort to eliminate the need to provide different startup or shutdown
servlets for the application.

� Abnormal application navigation

Using a thin client, browser-based architecture introduces some risks of
uncontrollable user behavior such as double and multiple-clicks, and
problems using backward button or forward button navigation. Abnormal
application navigation should be handled in a way that is consistent with the
application behavior. Double-click should not result in re-execution of
transaction.

The BTT base action manages double-clicks and back navigation or forward
navigation through the use of a token stored in the session and sent back with
every request (as hidden field).

64 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� Exception handling

The Apache Struts framework comes with an easy-to-use declarative
exception handling component, which allows for externally defined error
messages as well as exception handlers.

Session management
Sessions in Branch Transformation Toolkit V5.1 are handled in much the same
way as in Branch Transformation Toolkit V4.3. The major differences are the
necessary changes (Can this be changed to “changes made”?) to remove
session management physically from the BTT Context, and tie in the WebSphere
ActivitySession.

The Java API for applications does not change. However, the base classes used
for session management components such as SessionTable and SessionEntry
are simplified to use standard Java collections. This reduces runtime memory
overheads and enhances performance.

Business logic layer components
In Branch Transformation Toolkit 4.3, there are three ways of designing business
logic:

� Using self-contained ServerOperation components that contain all process
logic internally.

� Using composite ServerOperation components that will execute a procedural
series of externalized Flow Steps.

� Using the Branch Transformation Toolkit Automation state machine to
execute a series of actions based on the result of the last action performed.

This section discusses the migration considerations of the following business
logic designs:

� Self-contained and composite server operation processes

Starting from Branch Transformation Toolkit V5.0, server operation
architecture has been upgraded using the latest WebSphere Application
Server technology. There are two alternatives available in Branch
Transformation Toolkit 5.0 for Server Operation, that is, Flow Definition
Markup Language (FDML) process and Single Action Enterprise
JavaBeans™ (EJB). Branch Transformation Toolkit 5.1 goes further in the
same direction. It is based on the latest WebSphere Business Integration
Server Foundation. Instead of leveraging on FDML, Branch Transformation
Toolkit 5.1 uses Business Process Execution Language (BPEL), which is an
industry standard generally accepted by the market.

 Chapter 3. Planning a Branch Transformation Toolkit migration 65

Branch Transformation Toolkit 5.1 business process architecture depends on
a combination of BPEL, tooling, code generation, and framework abstraction.
After a user completes a process layout with BPEL, a plug-in tool generates
code and adds modifications to the BPEL process file. The generated code
and the modifications access user-defined logic through the abstracted
framework logic. The major areas of interest in Branch Transformation Toolkit
5.1 business process architecture include:

– Custom Property

In Branch Transformation Toolkit 5.0, Custom Attribute is an important
feature in FDML that processes used. In Branch Transformation Toolkit
5.1, BPEL is used, and the functions previously covered by Custom
Attribute are now handled by Custom Property.

Beside CHA type for the process, Custom Property also keeps system
data for the process, for example, indicators for process initialization and
termination, and properties to store snippet execution results.

Tooling is provided in Branch Transformation Toolkit to add Custom
Property support to a BPEL file.

– State Observer

Branch Transformation Toolkit 5.1 does not use State Observer.
Initialization and termination logic is implemented in helper classes and
added to Java snippet code as part of the code generation step.

– Helper Class and Access Class

A lot of system logic is now implemented in helper classes, for example,
launching a snippet, initializing, and terminating a process. An access class
is a class generated for a process. It is responsible for providing
synchronized access to the process initialization and termination logic.
Corresponding to an access class are Custom Properties that indicate if
the process has already been initialized or terminated.

Java code that accesses the helper classes and the access class is added
to the BPEL file through code generation. By doing so, the Branch
Transformation Toolkit minimizes the lines of code that are required to add
to the BPEL file.

– Process Initialization and Termination

As mentioned above, process initialization and termination logic are
implemented in helper classes. Java code that accesses the helper
classes will be added to the BPEL file as part of code generation.

Java code is added to the first navigation link for process initialization and
the last snippet for process termination. As a result, it is necessary to
locate the first activity and the last activity in a BPEL process. If a BPEL
process is ended with a Web service, rather than with a snippet, it is

66 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

necessary to add an extra snippet for process termination at the end of the
process.

In some special situations, a BPEL process can start and end with more
than one link or snippet. This is the reason why an access class is
required. An access class ensures synchronized access to the process
initialization and termination logic. If a BPEL process is defined so that it
ends with different snippets depending on the process navigation, it is
necessary to put the same navigation condition on the termination helper
class access logic. In this case, it prevents premature termination of the
process. The addition of the navigation condition is handled by the Branch
Transformation Toolkit.

– Common Hierarchical Area (CHA)

BPEL supports the concept of message variable. A variable holds a
message that contains various parts.

In Branch Transformation Toolkit 5.1, a CHA variable is defined with each
process. All the processes share the same message definition and the
message contains only one part, that is, CHA instance. Access to the CHA
instance is through a Branch Transformation Toolkit abstract layer, where
the logic related to the message variable is hidden from general
developers. Addition of the CHA variable is handled by tooling.

CHA instances stored in a message variable are accessible by the
process and by local Java snippets defined along with the process. If a
remote Web service is defined as part of a process, the work area will
store the CHA instance as well. When WebSphere Business Integration
Server Foundation is not available in the remote end, transfer of CHA
instance ID to the remote service through the service interface, is
required.

– Java snippets

Branch Transformation Toolkit 5.1 provides helper classes to launch an
operation step from a Java snippet defined in a BPEL process. The
implementation of a snippet, which includes the helper class access code,
is added to a BPEL process by the Branch Transformation Toolkit.

Operation steps that can be launched by the helper class extend the
Branch Transformation Toolkit abstract layer. The Branch Transformation
Toolkit abstract layer provides APIs for CHA and service and formatter
access, besides providing backward compatibility to the existing customer
code.

Java snippets use the abstract layer to access the CHA instance that is
stored in the message variable.

 Chapter 3. Planning a Branch Transformation Toolkit migration 67

– Web service

As an alternative to using local Java snippets, developers can also use a
remote Web service as an activity in their BPEL process.

When a remote Web service is used, this remote service will not have
access to the CHA instance stored in the local message variable. If the
Web service still requires access to the CHA instance, it is required to
either store the CHA instance in a work area and extend the Web service
from the Branch Transformation Toolkit abstract layer, or if WebSphere
Business Integration Server Foundation is not available at the remote end,
to send the CHA instance ID to the Web service through its service
interface.

Detection of remote Web service definition in a process is handled by the
code generation tooling. When a remote Web service is detected within a
process definition, the tooling should generate helper class access code
that reflects the issue.

– Navigation condition

In Branch Transformation Toolkit 4.3, operation steps may return an
integer that determines the navigation path of a process. This feature is
preserved in Branch Transformation Toolkit 5.1.

To implement this, the Branch Transformation Toolkit code generation
should detect all possible paths from a given activity and then add
navigation conditions to all the links.

The result of each operation step is stored in Custom Property. These
results will be evaluated as navigation conditions and used to determine
the flow of the process. It is important that each operation step has its own
corresponding custom property. Otherwise, the results might overwrite
each other if a parallel flow is defined within a process.

– Tooling

Tooling plays an important role in the Branch Transformation Toolkit 5.1
business process architecture. It is implemented as a WebSphere Studio
Application Developer Integration Edition plug-in and available to the
developers after they build the skeleton of a process. This tool is
responsible for adding modifications to a BPEL process and generating an
access class for the process.

Some of the modifications that are added to a BPEL process include:

• Import class statements
• CHAmessage variable
• Snippet implementation
• Process initialization and process termination logic
• Extra Java snippet if a process ends with a Web service

68 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

• Navigation logic
• Detection of Web service usage within a process
• Custom properties

– Modifying a process after code generation

If a process is modified after the completion of code generation, it is
necessary to run the code generation tool again.

� Automation-based business processes

Automation-based business processes are replaced by Invokers calling BPEL
business processes.

Runtime data management
The Branch Transformation Toolkit 4.3 used a shared data collection scheme
called Context, for handling runtime data. However, this scheme was not
scalable outside of a single Java Virtual Machine (JVM). To comply with the
scalability requirements of the J2EE architecture, it is necessary to provide a
distributed context. In Branch Transformation Toolkit 5.1, you can call CHA to
implement the facility.

For a Branch Transformation Toolkit solution, there are three logical context
types. These are:

� Local dynamic

These contexts do not have names and are transient in nature. Contexts of
this type are created locally and do not interact with a back-end CHA service.
They operate strictly within the local JVM and should not be passed between
processes for serialization performance reasons. Their usage includes
provision of temporary runtime data storage within a business process.

� Local predefined

These are local contexts that are named and predefined. They are created by
the backend CHA service on behalf of the caller and returned as a fully
self-contained context, complete with predefined internal structure. Once
received, the context instance is truly a local context with no further
interaction with the backend CHA. All data management and storage is within
the local context. These can be used for interaction with services or
formatters within the same business process.

� Fully distributed

Distributed contexts are made of two components: a client facade and a
backend CHA service. For this type of context, the context class is nothing
more than a thin shell over J2EE-compatible interfaces. Contexts of this type
delegate all method invocations to a remote CHA entity EJB for processing.

 Chapter 3. Planning a Branch Transformation Toolkit migration 69

From the application developer’s point of view, there is very little difference
between these types of contexts once they are created. In fact, the local
context types provide 95% of the functionality found in the Branch
Transformation Toolkit 4.3 context class.

The distributed context, however, has some restrictions. Removed from this
type of context are session management logic and event notifier storage. The
APIs remain, but the logic is replaced by delegation to external classes.
Internally, the context deals solely with data storage tasks.

Message formatting services
Another important component of the Branch Transformation Toolkit architecture
is the facility used to transfer data from message buffers to and from the Branch
Transformation Toolkit context. The version 5.1 toolkit extends the version 4.3
formatters and becomes an external, shared service. Because formatting
services do not change during an application run, it is possible to move this entire
facility out of the client and share these definitions and runtime processing
across all client applications within the enterprise. This reduces duplicated
definitions and logic across the enterprise network and reduces the client
memory and processing requirements.

Services
Branch Transformation Toolkit services are shared executable components
stored in the context and retrieved by the application as needed.

Due to the highly distributable nature of Branch Transformation Toolkit 5.1, it is
not possible to share executable components in the CHA. Instead, configuration
information for a service is stored in the context and is applied to an external Web
Services Invocation Framework (WSIF) component that encapsulates the service
functionality.

Events
The Branch Transformation Toolkit V5.1 supports a client/server event
framework for client/server event processing for compatibility with Java clients.
Changes are made to the Event Manager and to the context to support
client/server events. All the servlets associated with event processing are
preserved for client compatibility.

An event bridge is included to translate and route Branch Transformation Toolkit
events to and from JMS events.

70 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3.1.2 Tools
The development environment of Branch Transformation Toolkit applications is
based on the development workbench plugin for WebSphere Studio Application
Developer or WebSphere Studio Application Developer Integration Edition. The
development workbench allows nontechnical users to define and store new
business process flows and their associated data structures in a central
multi-user repository called the Development Workbench Repository. Business
process flows and framework entity definitions are managed with wizards
designed to simplify this task.

In the production environment, the Branch Transformation Toolkit 5.1 framework
uses these definitions as its configuration parameters to build the application
dynamically. This approach to application development is a key benefit of the
framework, minimizing the need for raw code development and promoting code
reuse.

The Branch Transformation Toolkit Development Workbench, which is a plugin
for WebSphere Studio, is a tool used to facilitate the creation of the definitions
needed for the product runtime. This tool helps the corresponding wizards to
allow and guide the entry of definitions and a repository to persist them.

The Branch Transformation Toolkit 5.1 Development Workbench includes the
following tools that help developers build an end-to-end solution application:

� CHA Editor and Format Editor

The CHA Editor provides a graphical and easier way to work with CHA
contexts and their data elements and types. As the number of definitions in
the files increases and the CHA structure increases in size and complexity,
maintaining a mental picture of the entire CHA structure becomes
increasingly difficult. The CHA Editor provides a visual representation of the
structure and lessens the need to deal directly with XML tags. This allows
developers to concentrate on business requirements and issues.

The Format Editor provides a graphical and easy way to work with the
definition file for formatters. It also provides a visual representation of the
structure and lessens the need for developers to deal directly with XML tags.
It provides common editing features such as cut, copy, paste, undo and redo,
load and save, delete, drag-and-drop, reorder format elements, and sorting.

� Struts tool extensions

The Struts tools extensions provide a graphical and easy way to work with
extended Struts configuration files. Since the toolkit’s Struts extensions
component provides customization to the Apache Struts framework, some
settings in the extended Struts configuration files are hidden from the

 Chapter 3. Planning a Branch Transformation Toolkit migration 71

standard Struts configuration file editor provided by WebSphere Studio
Application Developer.

The Struts tools extension has a friendly user interface that saves you from
directly editing the XML source of Struts configuration files.

� Business process wizard

The Business process wizard provides a GUI to help developers extend
business processes that take advantage of the Branch Transformation Toolkit
abstract layer. It helps to customize the business process code of the BPEL
files in the following ways:

– Specifying the CHA context associated with the business process.

– Specifying the process type, that is, general process, log on process, or
log off process.

– Specifying the mapping relationship between CHA contexts and process
results.

– Specifying external snippet classes for the business process.

– Enabling conditional navigation based on snippet results.

– Adding the variables in the process to the BPEL file and adding the
associated message definition of the variables to the WSDL file.

� Business operations migration tool

Branch Transformation Toolkit 5.1 provides a set of tools to migrate
applications developed with version 4.3 to the new Branch Transformation
Toolkit version. The migration tools provides GUI to help developers migrate
the server operations, flow processes, and screen flows of version 4.3
applications to the corresponding components of the version 5.1 applications.

In Branch Transformation Toolkit version 5.1, server operations are replaced
by single action EJBs or by business processes that are called by invokers.
You can migrate nonstep server operations to single action EJBs or business
processes and generate the associated invokers by using the migration tools.

You can migrate only stepped operations to business processes and generate
the associated invokers. The operation steps are migrated to Java snippets
for business processes. In general, links between the Java snippets are
automatically based on the server operation definition files.

� JSP screen flow migration tool

In Branch Transformation Toolkit version 5.1, screen flow processors are
based on the Apache Struts Framework. You can use the migration tool to
migrate version 4.3 screen flows to the corresponding constructs in version
5.1. After the migration, you can edit the screen flow either by editing the

72 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Struts configuration file in an XML editor or by editing the .gph file in a
graphical screen flow editor.

� BTT graphical workbench

You can use all the tools described here to facilitate the development of
applications based on the Branch Transformation Toolkit. The graphical
builder integrates all these tools. It provides visualization tools, integrated
development, and seamless deployment techniques that apply to the full life
cycle of your application development.

Figure 3-3 shows the tools provided by Branch Transformation Toolkit 5.1 and
the relationship amongst them.

Figure 3-3 Branch Transformation Toolkit tools

CHA

Struts Web
Diagram Editor CHA Editor Business

ProcessFormat Editor

CHA formatter service

BTT Struts
Extension

Presentation Flow

Graphical
Builder

One EAR
for Deployment

Package

Business
Process Editor

Invoker

EJB
Descriptor

Single Action
EJB

 Chapter 3. Planning a Branch Transformation Toolkit migration 73

3.1.3 Other features
The Branch Transformation Toolkit 5.1 adds the following features to an
end-to-end solution:

� LUO and LU6.2 Java Connector Architecture (JCA) connectors. These
connectors are:

– SNA JCA LU0

The SNA JCA LU0 Connector enables a Java application to send requests
to and get responses from an existing Enterprise Information System
(EIS). It enables developers to deploy these applications into a managed
environment in which a J2EE-capable application server such as
WebSphere Application Server handles connection pooling, transactions,
and security. To support this, the SNA JCA LU0 Connector implements the
JCA.

– SNA JCA LU62

SNA JCA LU62 Connector is a resource adapter that enables an
application to send requests to and get responses from an existing EIS. It
enables developers to deploy these applications into a managed
environment in which a J2EE-capable application server such as
WebSphere Application Server handles connection pooling, transactions,
and security.

To deliver the messages, the SNA JCA LU62 Connector supports the
WSIF interface through the JCA plug-in and JCA through the Common
Client Interface (CCI). CCI supports only local connections, which means
that the application must be on the same machine as the SNA JCA LU62
Connector. The WSIF interface supports local and remote connections. In
a remote connection, the application and SNA JCA LU62 Connector can
be on different machines. In this case, you can use the SNA JCA LU62
Connector to generate a SOAP proxy class and a set of WSDL files. The
application uses these files to access the remote SNA JCA LU62
Connector.

� Java light weight client sample application

Branch Transformation Toolkit 5.1 provides a sample application that
implements a Java client. This Java client sample is designed and
implemented to show the most important steps in a Branch Transformation
application development project.

The Java client sample application follows a four-tier architecture:

– The client tier, consisting of Java clients

74 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

– The application presentation tier, providing a bridge between the client
and the application logic tier, and managing the views of the Java client
sample application

– The application logic tier, conducting business transactions.

– The back-end system tier, storing the business data.

� HTML sample application

This sample demonstrates the important steps in developing an online home
banking application using the features of the Branch Transformation Toolkit
that support HTML clients. This sample can be used as a guideline for
solution providers who wish to gain a better understanding of the toolkit
facilities.

The target environment for the HTML sample is a four-tier architecture: client,
application presentation layer, application logic layer, and backend system
layer. In this case, the client is the Web browser used to access the home
banking application. This sample does not show the details of communication
between the server and the host because this is not its main purpose.

The application comprises the following:

– Client user interface components (JSP files)

– Business navigation processes (toolkit Struts extension externalized XML
files)

– Invoker definition (resource bundle file)

– Business logic components (Java code in Single Action EJB and business
process component)

3.2 Application packaging and topology
As part of building a Branch Transformation Toolkit solution, you should consider
application packaging and managing runtime topologies.

3.2.1 Application packaging
An important deployment issue is to determine a policy for packaging the
application code and resources. This policy determines how to distribute the
code and resources on different servers. A solution based on Branch
Transformation Toolkit may use Java Archive (JAR) files that provide physical
packaging for a set of files. The JAR files have the following advantages:

– Reduced interactions with the server during the download process.
– Improved transmission performance because of object compression.
– Optimized memory usage in the browser cache.

 Chapter 3. Planning a Branch Transformation Toolkit migration 75

When using JAR files for application packaging, consider the sizing and number
of packages to achieve optimal network performance.

The migration tool assists with application packaging. The migration tool can
generate an application deployment file, an EAR file. The EAR file is the outcome
of the migrated components. The migration tool user can select the components
needed to be put into the EAR file, and then generate the EAR. Currently, only
one EAR file can be generated at a time.

Applications are packaged into EAR files, allowing applications to be deployed
on a server as coherent, self-contained units. A server can have multiple EAR
files deployed. These EAR files will not interoperate with each other except
through established communication protocols such as JMS, HTTP, and IIOP.
While it is possible for the code within EAR files to interact with the file system
using absolute file addressing, this is considered to be an unsafe programming
practice that should be avoided and vigorously discouraged.

An EAR file can contain multiple Web Application (WAR) and EJB components.
Within an EAR file, interaction between these components can be controlled
using WebSphere Application Server security and access control mechanisms.
WebSphere Application Server provides implementations of the Java
Authentication and Access Service (JAAS), as well as extensions to the J2EE
Servlet API. WebSphere Application Server also contains role-based resource
access extensions to provide high levels of security to sensitive information.
These security features are configured as a part of the deployment configuration
when an application is deployed on a server. These features can also be enabled
globally or disabled as a part of the server configuration.

3.2.2 Topology
The physical location of the Branch Transformation Toolkit components depends
on the project environment and requirements. All the resources required for
these components, such as definition files, configuration files, and icons, can be
located either on a local client machine or on a remote server. Branch
Transformation Toolkit 5.1 resources comprise the following:

� Java classes that are executed as Java applications or applets.

� Configuration files and definition files that specify the user settings of the
Branch Transformation Toolkit 5.1 environment.

This way of managing resources allows for several different deployment
configurations, for example, the application code can be executed in a Web

76 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

browser or as an application. Figure 3-4 shows an example of a topology where
Web browser-based clients are used.

Figure 3-4 Application topology with Web browser clients

The Web browser-based topology has four kinds of servers:

� The enterprise server contains the older applications.

� The application server contains the Java code to communicate with
enterprise servers and clients

� The proxy server contains the cache.

HTTP

Browser cache (optional)

Java environment
resources for client code

(classes, jars, and files
downloaded on demand)

Client
Workstation

LAN Proxy cache
(for HTTP GET requests)

Java environment
resources for client code

(classes, jars, and files
downloaded on demand
or scheduled)

Java environment
resources for client code

(classes, jars and files)

Configuration files
(client and server)

(everything accessed remotely,
downloaded on demand)

Java environment
resources for server code

(classes and files
accessed locally)

Distribution through
existing processes

SNA, MQ, . . .

Enterprise
Server

Application
Server

Web
Server

Proxy
Server

WAN

HTTP

HTTP

HTTPHTTP

 Chapter 3. Planning a Branch Transformation Toolkit migration 77

� The Web server contains the application resources needed by the browser.

In a Java client topology, the proxy server is not required because Java clients do
not have the same features as Web browsers.

3.3 Workload management decisions
While not strictly related to migration activities, certain implications of Workload
Management (WLM) can affect migration planning. These are mostly related to
test and deployment activities.

Workload management is the process of spreading multiple requests for work
over the resources that can do the work. It optimizes the distribution of
processing tasks in a WebSphere Application Server environment. It also
improves performance, scalability, and availability of systems and applications,
besides providing failover when servers are not available.

3.3.1 Benefits
Workload management is most effective when the deployment topology
comprises application servers on multiple machines, since such a topology
provides both failover and improved scalability. It can also be used to improve
scalability in topologies where a system comprises multiple servers on a single,
high-capacity machine. In either case, it enables the system to effectively use the
available computing resources.

WLM provides the following benefits when constructing applications:

� It balances client requests, allowing incoming work requests to be distributed
according to a configured WLM selection policy.

� It provides failover capability by redirecting client requests to a running server
when one or more servers are unavailable. This improves the availability of
applications and administrative services.

� It enables systems to be scaled up to serve a higher client load than that
provided by basic configuration. With clusters and cluster members,
additional instances of servers can easily be added to the configuration.

� It enables servers to be transparently maintained and upgraded while the
applications remain available for users.

� It centralizes the administration of application servers and other objects.

78 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Two types of requests can be workload-managed in WebSphere Application
Server or WebSphere Business Integration Server Foundation:

� HTTP requests distributed across multiple Web containers.

� EJB requests distributed across multiple EJB containers.

3.3.2 Web server workload management
This is the mechanism for sharing the load by distributing HTTP requests among
a group of Web servers. These servers make up a cluster, grouping together
independent nodes that are interconnected and working together as a single
system. The cluster appears as a single Web server to the Web client or
browser.

This type of workload balancing is also called IP spraying. As shown in
Figure 3-5, it is used to intercept HTTP requests that are then redirected to the
appropriate machine in the cluster, providing scalability, load balancing, and
failover.

Figure 3-5 Web server workload management

3.4 Server cluster workload management
Clusters are sets of application servers that are managed together and
participate in workload management. The servers that are members of a cluster
can be on different host machines, as opposed to the servers that are part of the
same node and must be located on the same host machine. A cell can have one
cluster, multiple clusters, or no clusters at all.

A cluster is a logical grouping of the application servers, as shown in Figure 3-6.
It is not necessarily associated with any node, and does not correspond to any
real server process running on any node. A cluster contains only application
servers and the weighted workload capacity associated with those servers.

W
eb

 S
er

ve
r

C
lu

st
er

Client Caching
Proxy

IP Sprayer/
Load Balancer

Web Server

Web Server

Requests

 Chapter 3. Planning a Branch Transformation Toolkit migration 79

To prevent workload imbalances in which one server is overburdened and the
other servers have low or zero activity, the weighted definition allows nodes to
have different hardware resources and still participate in a cluster. The higher the
weight, the faster the request is served and vice versa.

Figure 3-6 Application server cluster

3.4.1 Workload management considerations
A WebSphere Application Server server cluster is a grouping of application
servers that can be managed together to participate in workload management.
Application servers participating in a cluster can be on the same node or on
different nodes. A deployment cell can either contain no clusters or have many
clusters, depending on the need of the cell administration.

Servers that belong to a cluster are members of that cluster set and must all have
identical application components deployed on them. Other than the applications
configured to run on them, cluster members do not have to share any other
configuration data. Following are some key guidelines to enable an application to
support clustering.

Application
WebSphere Application Server can respond to increased use of an enterprise
application by automatically replicating the application to additional cluster

Administrative Cell

Node 1

C
lu

st
er

 M
em

be
r i

n
Se

rv
er

 C
lu

st
er

 1

Application Server

Web
Container

EJB
Container

Application Server

Web
Container

EJB
Container

Application Server

Web
Container

EJB
Container

Server
Cluster

1

Web
Server B

Web
Server A

Web
Server C

Application Server

Web
Container

EJB
Container

Node 2

Application Server

Web
Container

EJB
Container

Application Server

Web
Container

EJB
Container

Application Server

Web
Container

EJB
Container

C
lu

st
er

 M
em

be
r i

n
Se

rv
er

 C
lu

st
er

 2

Server
Cluster

2

80 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

members as needed. This lets developers deploy an application on a cluster
instead of on a single node, without considering workload. This means that the
session and application must not be physically tied to any particular server's
JVM.

� Web applications should as stateless as possible.

If a state must be stored in the Web application, use the HTTP Session
persistence feature to store state data between request invocations.

� Session EJB instances should be stateless.

If a state is required, the stateful session bean should implement persistence
logic at its transaction boundary, usually at method invocation.

� Application state data should be implemented using Entity EJB classes.

Performance tuning is required to ensure that only critical data is persisted
frequently.

� J2EE prohibits multiple threads in EJBs.

Multiple threads should be avoided in the Web application as well, unless
these background threads are totally stateless and self-maintaining. It is very
difficult to coordinate background threads with session-level persistence.

Session management
In a clustered environment, the session management facility requires an affinity
mechanism so that all requests for a particular session are directed to the same
application server instance in the cluster. This requirement conforms to the Java
Servlets 2.3 specification in that multiple requests for a session cannot coexist in
multiple application servers. One such solution provided by IBM WebSphere
Application Server is session affinity in a cluster, available as part of the
WebSphere Application Server plug-ins for Web servers. It also provides for
better performance because the sessions are cached in memory. In clustered
environments other than WebSphere Application Server clusters, use an affinity
mechanism, for example, WebSphere Edge Server affinity.

Load balancing
A clustered environment supports load balancing, where the workload is
distributed among the application servers that comprise the cluster. In a cluster
environment, the same Web application must exist on each of the servers that
can access the session. Developers can accomplish this setup by installing an
application on to a cluster definition. Each of the servers in the group can then
access the Web application.

 Chapter 3. Planning a Branch Transformation Toolkit migration 81

Fault tolerance
If one of the servers in the cluster fails, it is possible for the request to reroute to
another server in the cluster. If distributed sessions support, that is, session
persistence, is enabled, the new server can access session data from the
database or another WebSphere Application Server instance. You can retrieve
the session data only if a new server has access to an external location from
which it can retrieve the session.

Figure 3-7 WebSphere Application Server cell

As shown in Figure 3-7, each cluster member server might be any of the
WebSphere Application Server instance views. However, although cluster
member servers are identical to each other, data is not visible between them
unless it is specifically shared using database or entity EJB instances. In other
words, if one cluster member creates static data, the data created will not
automatically be available to the other cluster members.

3.5 Migration considerations for custom extensions
Custom extension is a capability that allows users to plug a custom process into
the migration module. In general, this is used to extend the coverage of the

WebSphere Server Cell

Primary Cluster

Persistence
Datastore

Session Affinity

Cluster Member Server

Cluster Member Server

Cluster Member Server

Cluster Member Server

Backup Cluster

Cluster Member Server

Cluster Member Server

Cluster Member Server

Cluster Member Server

Load
Balancing

Fail Over

W
eb

S
ph

er
e

E
dg

e
S

er
ve

r

Session &
EJB

Persistence

Client

Client

Client

82 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

migration tool to handle any extended functions in the existing Branch
Transformation Toolkit application system.

Using the migration modules provided by Branch Transformation Toolkit as a
base, you can make extension customizations to meet application requirements,
and then plug them into the migration tool. The migration tool carries out the
custom extension as the extra process right after the base migration process. It
is also possible to replace completely the default process of the migration tool.

The user extension employs the migration component base. Therefore, a
developer can replace and extend base migration functions flexibly. This is a key
feature of the migration tool and provides the flexibility for customers to plug in
their own extensions. In many cases, Branch Transformation Toolkit projects
extend or replace Branch Transformation Toolkit functions and features in order
to meet business requirements and extend the capability. Therefore, the
migration tool must provide the capability to migrate users’ custom extensions to
Branch Transformation Toolkit 5.1.

3.5.1 Extensions in Branch Transformation Toolkit 4.3
Branch Transformation Toolkit customization is often needed to enrich and
enhance the base functionality to meet application system requirements. The
Branch Transformation Toolkit provides a high extensible framework, allowing
the customer to extend its base functions.

Customers usually make extensions for Branch Transformation Toolkit 4.3
application systems by modifying the following components:

� Data element
� Type data element
� Format
� Service
� Operation
� Flow processor
� Screen flow processor

These customer extensions affect the following two areas:

� Branch Transformation Toolkit definition files

– dse.ini

The definition file has additional information for the new tags.

– Component-related definition files

These use new tags with the new attributes.

 Chapter 3. Planning a Branch Transformation Toolkit migration 83

� Classes

– Sub-class of the base class

The customer extensions need to inherit from the base classes of Branch
Transformation Toolkit components to add new features or change the
existing functions.

– Application

The application has to cast the object type to the customer extension to
access the new features and APIs. It can also use a sub-class of the
customer extension to inherit key behavior. We usually recommend using
this method for operation extensions.

3.5.2 Extension points in migration tools
The migration tool should provide extension points in the following areas:

� Definition files

The included components are:

– dse.ini file
– Data model, including Context, Data Element, and Type Data Element
– Formatter
– Operation
– Flow processor
– Screen flow processor

For Service components, customer extensions are not included in the
migration tool, but your options are described in the migration documentation.

� Applications

The migration tool provides extension point in code generation for the
following components:

– Operation

All child classes of the custom operation class will be migrated to single
action EJB (SAE) or activities in BPEL. In general, non-step operations will
be migrated to a SAE and step operations will be migrated to BPEL. The
migration tool provides the extension point as part of code generation.

– Flow processor

All flow processors will be migrated to the BPEL activities. The migration
tool provides an extension point in the code generation step.

– Screen flow processor

Screen flow processor logic is located on both the client and server side of
Branch Transformation Toolkit V4.3 solutions. Therefore, screen flow

84 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

processors will be migrated to a combination of Struts extensions, SAEs
and BPEL processes. The migration tool provides an extension point in
the code generation step.

For both definition files and applications, the migration tool provides a
configuration point to specify any extended classes, so that they can be plugged
into the migration process. The extended classes are not for the Branch
Transformation Toolkit runtime class, but for the custom migration process to
generate the proper definitions or program code for Branch Transformation
Toolkit runtime custom extensions.

When migration is needed for subclasses of the base Branch Transformation
Toolkit components such as Context, Data Element, and Formatter, and for
superclasses of custom operations such as Flow processor and Screen Flow
processor, the migration tool does not provide support. It is the client’s
responsibility to modify this code manually as part of the migration project.
Details of manual migration of tasks are discussed in the following chapters.

3.6 Limitations
Not every project built with Branch Transformation Toolkit 4.3 can be migrated
smoothly to version 5.1. Due to the changes in the architecture of Branch
Transformation Toolkit V5.1 and because of the introduction of new technology,
several limitations that should be considered when carrying out a migration
project still exist. Some of the migration limitations are due to the Branch
Transformation Toolkit itself, while others are caused by the new features in the
new version. This section provides an overview of some of the migration issues
you might encounter.

3.6.1 Limitations of Branch Transformation Toolkit 5.1 function
The Branch Transformation Toolkit provides a number of tools that support the
development of applications. All the tools are plug-ins to WebSphere Studio
Application Developer or WebSphere Studio Application Developer Integration
Edition.

This section lists the limitations and known issues for IBM Branch
Transformation Toolkit for WebSphere Studio V5.1. It also provides information
on any fixes or workarounds that exist for these limitations and issues.

Note: some functions of version 5.1 are only available when WebSphere
Studio Application Developer Integration Edition is used.

 Chapter 3. Planning a Branch Transformation Toolkit migration 85

Several limitations and issues are identified with the following components:

� Business Process Wizard

This wizard provides a GUI to help developers extend business processes to
take advantage of toolkit-specific entities. This tool is only available when
WebSphere Studio Application Developer Integration Edition is used.

� Business Process Component

This component enables applications to perform business processes using
the Business Process Container in WebSphere Application Server Enterprise
Edition. Applications can invoke the business process using a request
handler feature of the multichannel architecture and an EJB interface, or by
using a flow processor through the EJB or WSIF interface.

� CHA Editor and Format Editor

– These components support only motif mode for WebSphere Studio
Application Developer or WebSphere Studio Application Developer
Integration Edition on Linux.

– They only support their tool-specific XML syntax tools. If you load an XML
file that contains self-defined tags or attributes not supported by the tools,
the system will clean those tags and attributes from the XML file when a
save is done.

– Type view does not support synchronization with other views.

– For typed data, the descriptor does not support adding parameters such
as a subtag with IDs not defined in optional attributes.

– For typed data, the KCollDescriptor and ICollDescriptor does not support
adding a validator into the descriptor.

– For typed data, the refType descriptor cannot add attributes to override
attributes of referenced data.

– When using WebSphere Studio Application Developer Integration Edition
version 5.1.1 on Linux in motif mode, using the mouse scroll button to drag
context nodes and format definitions is not supported.

– When using the Format Editor with WebSphere Studio Application
Developer, always close the Format Editor before closing the WebSphere
Studio Application Developer. Otherwise, the next time WebSphere Studio
Application Developer is started, the Format Editor and CHA Editor that
are started automatically can have problems with view synchronization. To
solve the synchronization problem, close the automatically started Format
Editor and CHA Editor and start them again.

86 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3.6.2 Limitations for migration
Because Branch Transformation Toolkit V5.1 uses many new technologies and
is redesigned to take advantage of new software architectures, one of the
challenges for a successful migration is to bridge the gap between two
applications that use different toolkit versions. There are many ways of solving
the problems that result from migration activities. Although the migration tool
provided by Branch Transformation Toolkit 5.1 does most of the work, some
modification and reconfiguration is needed to successfully migrate a Branch
Transformation Toolkit application. For complicated migration changes, rewrite
some of the application logic to comply with the new standards or technology.

In some cases, Branch Transformation Toolkit V5.1 can no longer accept some
code or features from the existing applications and this can make it difficult to
modify the application. To minimize these problems, application designers
should design a total architecture that avoid such conflicts in advance.

Some issues that could occur during the migration process are listed here:

� Invokers

When using JDK 1.4, create the EJB home object of the invokers explicitly.
The invoker super class does not provide a common EJBHome creation
method.

� Services

If the service invoker is called in a non-J2EE environment, a SOAP invocation
with a nested Hashtable message type works properly. However, in a J2EE
environment, for example, application client, servlet, EJB, and so on, the
nested Hashtable message type fails. This affects the services architecture,
JDBC table services, and the electronic journal.

� Business Process Wizard

Since the Business Process Wizard makes extensions from the EMF model
of the Process Editor and the graphical display of the Process Editor is
controlled by the internal mechanism of the EMF/GEF, the Business Process
Wizard may have problems displaying the graphical layout of generated
BPEL snippets and the content of BPEL variables. In such a situation,
manually adjust the graphical layout to get a clearer picture and re-open the
editor to refresh the content of BPEL variables.

� Migration tools

– The migration tool does not support the new attributes of the customer
extension.

– To import definition files when using a URL instead of a local disk, all
self-defined files have to be specified in the dse.ini file. It is impossible to
query how many files are under a given URL.

 Chapter 3. Planning a Branch Transformation Toolkit migration 87

– If you carry out screen flow migration multiple times, the wizard will show
duplicate Struts configuration files in the list.

88 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Chapter 4. Preparing for migration

The overall migration process consists of several phases. Before the real
migration, you should perform some amount of analysis and preparation.
Depending on your migration objectives, you might have to customize the
migration tools to meet the requirements of the application you want to migrate.

In this chapter, the following topics are discussed:

� 4.1, “Analysis and preparation” on page 90
� 4.2, “Setting up the migration tools” on page 91
� 4.3, “Customizing the migration tools” on page 96

4

© Copyright IBM Corp. 2006. All rights reserved. 89

4.1 Analysis and preparation
During this phase, the project team should perform a complete analysis of the
differences between Branch Transformation Toolkit version 4.3 and version 5.1,
paying particular attention to the difference in the application logic layer. The
project team can use the documentation of the existing application system to
identify the parts that can be migrated automatically and the parts that cannot be
migrated automatically. This will help make preparations for the migration.

When preparing for migration work, the project team should analyze the situation
before starting the real migration. We recommend that you undertake the
following steps:

� Prepare the Branch Transformation Toolkit 4.3 project that will be migrated. In
this Redbook, we use the standard Branch Transformation Toolkit 4.3
application sample to illustrate the migration tasks.

� Gather all the definition files of the existing version 4.3 application system.
The migration tool can migrate the definition files on the server side from
version 4.3 to version 5.1, besides processing the tags based on the
specifications of version 4.3. If there are any special tag definitions, the
migration tool may not be able to migrate them successfully. To overcome
this, either customize the migration tool to extend the process so that it
contains special definitions for the application or perform a manual migration
later.

� The migration tool cannot migrate the business logic of an application directly
to version 5.1. The tool creates skeletons with names corresponding to the
server operations or the actions in a flow. However, you can make extensions
to the migration tool so that it automatically moves the business logic to the
generated code. The project team should carry out an investigation to check
whether or not it is worthwhile to extend the migration tool to add more
functions.

� To maintain the integrity of a migration, do not attempt to customize the
migration process that handles screen flow generation, business flow
generation, and the version 5.1 tooling artifact generation.

� The project team must package the application into a JAR file, copy the JAR
file into the plug-in directory of the migration tool, and then modify the
plug-in.xml to include the library. This is because the migration tool has to
refer to the applications when it does the migration.

� The migration tool can migrate non-step server operations to either a Single
Action EJB or a Business Process. However, the project team must separate
the definition files and the application JARs into different sets if the application
is to be migrated with both sets. The migration tool allows the creation of
multiple projects to migrate different sets of applications.

90 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� Although the migration tool supports services on the server side, the JDBC
Table Service and Electronic Journal Service are left unchanged, while the
SNA LU0/6.2 communication services are changed to JCA connectors. This
means that you must find a different solution for these unsupported services,
for example, Lotus® Notes® (R) support, LDAP support, MQ connector, or
the relevant JCA connector can be used. Alternately, you can implement a
new service based on the new service architecture. The migration tool can
migrate server side service definition by modifying the class information for
the services supported in Branch Transformation Toolkit 5.1. The migration
tool also modifies the DummyDB2Journal.

� The event mechanism is changed to fit the Branch Transformation Toolkit
version 5.1 framework in order to be distributable and to span different
servers. The project team must check and modify the application accordingly
if the event mechanism is adopted on the server side of the current
application system.

� For the client applications, there are no changes. The project team does not
have to migrate it to version 5.1. The only thing to be done is to verify the
migration invoker and the related *.properties files to check whether they
match the server operation names.

� If the migrated application runs only on WebSphere Application Server, use
WebSphere Studio Application Developer to migrate the application. If the
migrated application runs on WebSphere Business Integration Server
Foundation, use WebSphere Studio Application Developer Integration Edition
for the migration. This provides more feature support in the final application.
The migration tool itself provides fewer features on WebSphere Studio
Application Developer than it does on WebSphere Studio Application
Developer Integration Edition. The main difference is that there is no support
for generating business processes when you use WebSphere Studio
Application Developer. In WebSphere Studio Application Developer, step
operations and flow processors cannot be migrated. You should either switch
to using non-step operations or skip migration of these operations and create
the Single Action EJB manually. Non-step operation can only be migrated to a
Single Action EJB.

4.2 Setting up the migration tools
Before migrating a Branch Transformation Toolkit 4.3 application, ensure that the
correct plug-in JARs are in the right directories. If not, copy the following plug-ins
from the plug-ins/wsadie51 directory of the Branch Transformation Toolkit 5.1
install package into the wstools/eclipse/plug-ins/ directory of the WebSphere
Studio Application Developer Integration Edition.

� com.ibm.btt.tools.bp_5.1.0

 Chapter 4. Preparing for migration 91

� com.ibm.btt.tools.chaeditor.model.emf_5.1.0
� com.ibm.btt.tools.chaeditor_5.1.0
� com.ibm.btt.tools.common_5.1.0
� com.ibm.btt.tools.fmteditor.model.emf_5.1.0
� com.ibm.btt.tools.fmteditor_5.1.0
� com.ibm.btt.tools.gw.model.emf_5.1.0
� com.ibm.btt.tools.gw_5.1.0
� com.ibm.btt.tools.migration_5.1.0
� com.ibm.btt.tools.struts_5.1.0
� com.ibm.btt.tools.webdiagrameditor_5.1.0

Because the migration tools refer to the Branch Transformation Toolkit 4.3
application during the migration phase, before migrating the application, package
the application into a JAR file and ensure that this JAR is included by the
migration tool. These steps are necessary for migration because the migration
tool must use the JAR files to initialize the Branch Transformation Toolkit
environment and to read the related information about the application. Include
some server-side files also in the runtime library.

Perform the following tasks:

1. Package the server side application into JAR files.

2. Copy the JAR files into the migration tool plug-in directory under the runtime
folder.

3. Modify plug-in.xml to include the JARS in the runtime library. Example 4-1
shows a plugin.xml after modification for migration.

Example 4-1 Plugin.xml modified for migration

<?xml version="1.0" encoding="UTF-8"?>
<plugin
id="com.ibm.btt.tools.migration"
name="BTT Migration Tool Plug-in"
version="1.0.0"
provider-name="IBM"
class="com.ibm.btt.tools.migration.BTTMigrationPlugin">
<runtime>
 <library name="bttmigration.jar">
 <export name="*"/>
 </library>
 <library name="runtime/bttstrutstool.jar"/>
 <library name="runtime/dseb.jar"/>
 <library name="runtime/dseflp.jar"/>
 :
 :
 <library name="runtime/yourapp1.jar"/>

92 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

 <library name="runtime/yourapp2.jar"/>
</runtime>
 :
 :
</plugin>

For the migration sample in this book, perform the following steps:

1. In the Java perspective of WebSphere Studio, change to the Package
Explorer view and expand the DSE_SampleApplicationWeb project.

 Chapter 4. Preparing for migration 93

2. In the JavaSource folder, select the packages com.ibm.dse.samples.appl,
and com.ibm.dse.samples.comms, and the files
commssample.properties and sampleapplserver.properties, as shown in
Figure 4-1.

Figure 4-1 Export JAR file of sample application

3. Right-click and select Export → JAR file. Click Next.

94 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

4. In the next window, check Export java source files and resources, enter
sampleAppl.jar as the JAR file name, select an export destination, and click
Finish, as shown in Figure 4-2.

Figure 4-2 JAR file export details

5. Add the JAR file to the plugin runtime directory of the Branch Transformation
Toolkit migration tool.

a. Copy sampleAppl.jar to the
\wstools\eclipse\plugins\com.ibm.btt.tools.migration_5.1.0\runtime\
directory of your WebSphere Studio Application Developer Integration
Edition installation.

b. Modify plugin.xml found in the WebSphere Studio Application Developer
Integration Edition installation directory
\wstools\eclipse\plugins\com.ibm.btt.tools.migration_5.1.0\ to include the

 Chapter 4. Preparing for migration 95

JAR file. Between the <runtime> and </runtime> tags in the plugin file, add
the following line:

<library name="runtime/sampleAppl.jar"/>

Save and close the plugin file.

6. In the WebContent folder of the DSE_SampleApplicationWeb project, copy all
the JSP files, and paste them into a temporary directory, for example,
C:\temp\jsp, for later use.

4.3 Customizing the migration tools
During the migration phase, you can customize the migration tool to enrich its
functionality. To do this, perform the following tasks:

� Customize the code generation process. The migration tool generates only a
code skeleton when it does the migration. You should then enhance its
functionality, for example, modify it so that it copies the business logic from
the server operation, or the action of the flow to the code generation logic. To
do this, extend or change the classes of the migration tool.

� Customize the definition file migration process by extending or changing the
migration tool base classes.

� Customize the user interface to the custom migration process. The user
interfaces of the migration tool are based on the Eclipse programming model.

96 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Chapter 5. Migrating an application

This chapter describes how to migrate an application by using the migration tool.
This chapter discusses the following topics:

� 5.1, “Creating a new migration project” on page 98
� 5.2, “Using the migration tools” on page 102
� 5.3, “Manual modification for migration” on page 115

5

© Copyright IBM Corp. 2006. All rights reserved. 97

5.1 Creating a new migration project
The overall steps to performing a migration are:

1. Create a migration project by using the Branch Transformation Toolkit
migration tool and import the definition files from a specific EAR file, or specify
the location of a dse.ini file on your disk. After the process is completed, the
migration tool creates the related projects, including an EAR project, a Web
project, and an EJB project. A Services project is created if you use
WebSphere Studio Application Developer Integration Edition for your
migration.

2. Migrate the application automatically by using the tool. Using this process,
most of the construction work required to complete a migration can be
performed by the migration tool. The tool can migrate the DSE ini file, DSE
data file, and the business logic of the application. It can also generate
Branch Transformation Toolkit 5.1 tooling artifacts for the Graphical Builder,
based on the generation of the screen flow.

3. Perform any manual tasks that are required for the migration.

4. Use the migration tool to diagnose and analyze any migration problems.

As described in the previous chapters, before beginning the real migration,
perform a migration analysis and customize the migration tool for any special
needs. When these tasks have been completed, you can begin a migration by
creating a migration project.

In our sample, we used the migration wizard to create a new project with the type
BTT Migration Project in the Branch Transformation Toolkit collection. To do
this, perform the following steps:

1. Start WebSphere Studio Application Developer Integration Edition and create
a new workspace. From the main menu, select File → New → Other...

Note: The phases are iterative and contain tasks that might have to be refined
during the project life cycle.

98 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. In the open dialog box, select IBM Branch Transformation Toolkit from the
left navigation panel, and select BTT Migration Project from the right panel.
Click Next, as shown in Figure 5-1.

Figure 5-1 New migration project

3. For the J2EE Specification version, select J2EE 1.3 Enterprise Application
Project. Click Next.

4. Enter BaseSample as the project name. Click Next.

5. In the next window, select From EAR. Click Select EAR to navigate to the
DSE_SampleApplication.ear file. Click Next.

From the Dse.ini panel as shown in Figure 5-2 on page 100, select the dse.ini
file of the project you are migrating.

 Chapter 5. Migrating an application 99

Figure 5-2 Selecting the DSE.ini file

You can choose the dse.ini file in the following ways:

– Select the dse.ini from your local directory.

To do this, select From URL and click Select DSE to browse to your
dse.ini file and select it.

– Select the EAR file containing the dse.ini file.

To do this, select From EAR and click Select EAR to browse to your EAR
file and select it. You can then select the dse.ini file from the Select DSE
File list.

Note: Because the migration tool only migrates server-side application
components, make sure the dse.ini file you selected is the server-side one.

100 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

6. You can now see the default names of the Branch Transformation Toolkit 5.1
projects that will be created, as shown in Figure 5-3. Click Finish. The
selected project is created and the Graphical Builder is started automatically.

Figure 5-3 Migration project names

7. Before continuing, you have to make some changes to one of the definition
XML files.

a. Expand the BaseSampleMigration project.

b. Navigate to the 4.3Definitions/selfDefine folder.

c. Open sampleHtmlFlow.xml with the XML Editor.

d. Find the following definition:

<htmlState id="userErrorInfoPage" type="operation"
typeIdInfo="error.jsp">

Change this to:

<htmlState id="userErrorInfoPage" type="page" typeIdInfo="error.jsp">

 Chapter 5. Migrating an application 101

e. Save the file.

f. Close and reopen WebSphere Studio Application Developer Integration
Edition.

After you create the migration project, you will find all the related definition files
copied into the category of 4.3 definition. You will also see that EAR, EJB, Web,
and Services projects are created.

5.2 Using the migration tools
Branch Transformation Toolkit provides a set of tools to help you migrate toolkit
applications developed with version 4.3 of the toolkit, to the version 5.1
architecture.

The migration tools perform the following tasks during a migration:

� Migrate the version 4.3 definition dse.ini file to version 5.1.

� Migrate the version 4.3 dse data definition files to version 5.1 requirements,
including dsectx.xml context definitions, dsedata.xml data definitions,
dsefmt.xml formatter definitions, dsetype.xml type definitions, dsesrvce.xml
service definitions, and so on.

� Generate the corresponding runtime code, including business processes,
Java snippets, Single Action EJBs, and so on. These taskscode includes:

– Migrating the server operations to Single Action EJBs or business
processes if WebSphere Studio Application Developer Integration Edition
is used. After you complete the process, the migration tool will generate
invokers (Java code), and Single Action EJBs or business processes.

– Migrating the flow processes to business process if WebSphere Studio
Application Developer Integration Edition is used. After you complete the
process, the migration tool will generate the BPEL file and invoker (Java
code).

– Migrating the screen flow to Struts extensions. After you complete the
process, the migration tool will generate the Struts config file, Web
diagram (.gph file), and migrated JSPs.

– Migrating self-definition files, if any, as well as the Struts config file, Web
diagram (.gph file), and migrated JSPs?). Also, the definitions of the

Note: You must restart WebSphere Studio Application Developer
Integration Edition if you change any content in the Branch
Transformation Toolkit external files.

102 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

context, the data element, the type data and the format in the
self-definition files will be added into the generic definition files.

� Generate version 5.1 tooling artifacts such as Graphical Builder definition
files.

The migration tools provide GUIs to help you migrate the toolkit configuration
files, data model, formatter definitions, server operations, flow processes, and
screen flows of the version 4.3 application to the corresponding components of
the version 5.1 application. Furthermore, the migration tools are designed to be a
scalable toolset for you to build your own batch migration applications using a set
of APIs. You can also customize the migration tools for your special needs.

5.2.1 Migrating the dse.ini file
In this section, we provide an example to describe how to migrate the definition
files from the version 4.3 toolkit sample application to version 5.1. Perform the
following tasks to do the same:

1. Expand the BaseSampleMigration project in the 4.3 Definitions folder,
right-click the dse.ini file and choose BTT Migration → DSE ini File
Migration, as shown in Figure 5-4.

Figure 5-4 Starting DSE ini file migration

Note: After migration, do not change the names of toolkit constructs such as
contexts, formatters, and so on. The names of the constructs are assigned
automatically by the migration tool. If you change the name of a construct
manually after the migration, the migrated application will not be able to find
that construct anymore.

 Chapter 5. Migrating an application 103

2. The properties of the CHA Server are displayed, as shown in Figure 5-5. To
change any properties, double-click the property value. To continue with the
migration wizard, click Next.

Figure 5-5 CHA server properties

3. The remaining pages of the wizard show the properties of the formatter
service, the service server, and the work area respectively. Keep all the
properties values as default and click Next to proceed through all the wizard
pages. Click Finish to complete the wizard.

The wizard migrates the version 4.3 dse.ini file to a version 5.1 file and copies
the 5.1 dse.ini file into the 5.1 definitions folder of the application migration
project.

5.2.2 Migrating data and format definitions
This section describes how to migrate data and format definitions. Perform the
following tasks:

1. Make sure that all the IDs of the data fields start with a lowercase character. If
the first character of a data field ID is an uppercase character, change that
first character into a lowercase one. For example, change the code that is
similar to the one shown in Example 5-1 on page 105 to code that looks like
the one shown in Example 5-2 on page 105.

104 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Example 5-1 Data field ID using uppercase

kColl id="individualSessionData">
 <field id="LogonPortal" value="1"/>
</kColl>

Example 5-2 Data field ID using lowercase

<kColl id="individualSessionData">
 <field id="logonPortal" value="1"/>
</kColl>

2. In the 4.3 Definitions folder, right-click the dse.ini file and select BTT
Migration → CHA and Format Migration. Click Finish as shown in
Figure 5-6.

Figure 5-6 CHA, service, and format migration

The migration tool migrates the following files from version 4.3 to the version
5.1 definitions folder of the application migration project:

– dsedata.xml
– dsetype.xml
– dsectxt.xml
– dsefmts.xml
– dsesrvce.xml

Note: The migration tool only copies dsesrvce.xml from 4.3 Definitions
to 5.1 Definitions. You should modify dsesrvce.xml manually.

 Chapter 5. Migrating an application 105

5.2.3 Migrating server operations
In Branch Transformation Toolkit version 5.1, server operations are replaced by
either Single Action EJBs or business processes called by invokers.

To migrate the nonstep server operations to Single Action EJBs or business
processes, and generate the associated invokers, perform the following tasks:

1. In the 4.3 Definitions folder, right-click dseoper.xml and select BTT
Migration → Server Operation Migration. This starts the server operation
file migration wizard.

2. From the Server Operation Migration dialog box, select the server operations,
and decide if you want the nonstep server operations to be migrated to Java

snippets for business processes or Single Action EJBs. An invoker will also be
generated for calling the Single Action EJB or business process. From the
Server Operation Migration dialog box, you can see the name of the invoker,

106 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

the name of the Single Action EJB or business process, and the package
where the Single Action EJB and business process locates.

For this sample, migrate all the non-step operations to the default Single
Action EJB, in the pop-up window in Figure 5-7. For the Invoker Type, select
both.

Note: The selection of Java snippets for business processes or Single
Action EJBs affects all the nonstep server operations that are listed in the
server operation file migration wizard. To have one set of server operations
migrated to Single Action EJB and another set that is not, create two
migration projects for each set.

 Chapter 5. Migrating an application 107

Figure 5-7 Server Operation Migration

3. Click Finish. You can see the generated invoker and its properties files in the
Web project of the application, the Single Action EJBs in the EJB project of
the application, and the business processes in the Process project of the
application. The entry properties file is also upgraded in the application
projects.

Stepped operations in toolkit version 4.3 can only be migrated to business
processes. To migrate the stepped server operations to business processes and
generate the associated invokers, perform the following tasks:

1. From the Server Operation Migration dialog box, select the server operations.
You can see the name of the invoker, the name of the Single Action EJB or
business process, and the package where the Single Action EJB and
business process are located.

2. Click Finish. You can see the generated invoker and its properties files in the
Web project of the application, and the business processes in the process
project of the application. The entry properties file is also upgraded in the
application projects.

The operation steps are migrated to Java snippets for business processes.
Generally, links between the Java snippets are automatically based on the
server operation definition files.

If the operation contains suboperations, the stepped suboperations will be
migrated to business processes with associated invokers generated, and the
nonstep suboperations migrated to Java snippets of the BaseOperSnippet type.

To customize the nonstep operation migration option, select the operation in the
Server Operation list in the left side of the panel, and then select Single Action
EJB or Business Process in the right side of the panel. In the same way, you
can select another operation in the list and choose the migration target option in
the left.

Note: The entry properties file is a kind of index or invoker registry to map
an invoker ID to an invoker properties file.

Note: The migration tool automatically migrates Server Operation, which has
steps to BPEL process. Tools allow users to migrate Nonstep Server
Operation to SAE or BP. In default, it will be migrated to SAE.

108 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5.2.4 Migrating flow processors
In Branch Transformation Toolkit version 5.1, flow processors are replaced by
business processes or Single Action EJBs on the server side. To migrate the
server-side flow processors to the corresponding constructs in version 5.1,
perform the following tasks:

1. From the Package Explorer view, in the 4.3Definitions folder, right-click
dseproc.xml file and select BTT Migration → Flow Processor Migration.
This starts the flow processor file migration wizard.

2. In the pop-up Flow Processor Migration dialog box, select genericFlow. For
the Invoker Type, select both, as shown in Figure 5-8 on page 110.

– The Actions defined in the flow processor definition file maps to JavaTM
snippets.

– Guard conditions map to extra navigation links as a leaf node in the
business process. Conditions are added in links to control the navigation.

– Transition conditions map to normal business process nodes.

From the Flow Processor Migration dialog box, you can see the name of the
invoker, the name of the Single Action EJB or business process, and the
package where the Single Action EJB and business process are located.

3. Click Finish. Java snippets and business processes are created in the
Process project of the application. Validation classes are also migrated.

 Chapter 5. Migrating an application 109

Figure 5-8

Make sure the following requirements are met when migrating flow processors:

� Flow processor do not contain any page state.

� The subprocessors or descendent processors of the flow processor that you
are migrating do not contain any page state.

� The flow processor definition file follows all the rules for defining a processor.

5.2.5 Migrating screen flow processors
In Branch Transformation Toolkit version 5.1, screen flow processors are
re-based on the Apache Struts Framework. To migrate version 4.3 screen flows
to the corresponding constructs in version 5.1, perform the following tasks:

1. From the Package Explorer view of WebSphere Studio Application
Developer, right-click the dseproc.xml file that contains the version 4.3
screen flow processors and select BTT Migration → Screen Flow
Processor Migration. This starts the screen flow processor file migration
wizard.

2. From the Screen Flow Processor Migration dialog box, select the screen flow
processors. From the Screen Flow Processor Migration dialog box, you can

110 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

see related information such as reference context, validation class, and Struts
file name.

3. Click Finish.

Because there is no screen flow definition in the dseproc.xml file of the BTT4311
Base Sample in our sample, you can skip it.

Migrating screen flow processors accomplishes these tasks:

� Convert the <htmlProcessor> tag to a Struts process definition file.

� Convert Actions to Struts Actions.

� Convert operation actions to business processes defined in a BPEL file.

� Translate the navigation links into the Struts definition file. Transitions are
transformed into the forward definitions of Struts.

� Convert version 4.3 validation classes to version 5.1 validation classes.

� Convert condition definitions to the condition definitions of Struts Extensions.

� Convert processor contexts to the processor CHA contexts of Struts
Extensions.

� Convert transition actions to two Struts actions.

� Convert transition contexts to transition CHA contexts and Form Beans of
Struts Extensions.

� For JSP files, change the next event to a URI.

After the screen flow migration process is completed, the result is placed in the
Web project. You can browse and edit the screen flow by the Struts configuration
file in an XML editor or the .gph file in a graphical screen flow editor.

5.2.6 Migrating self-defined files
Migrating the self-definition files generates struts configure file, Web diagram
(.gph file), and migrated JSPs. In addition to the struts extension-related files, it
also adds definition of context, data element, type data, and format into the
generic definition files.

For our sample, perform the following tasks:

1. In the 4.3 Definitions folder, right-click the dse.ini file and select BTT
Migration → Self-Define Migration.

2. In the pop-up window, select a self-definition file from the list, and click Next,
as shown in Figure 5-9 on page 112.

 Chapter 5. Migrating an application 111

Figure 5-9 Selecting a self-definition file

3. The windows that follow show the context list, data element list, format list,
type data list, server operations, and flow processors, in the same order. All
you have to do is click Next to advance through them.

4. The next pop-up window shows the properties of the defined screen flows, if
any. In this sample, you have to configure it only when you select
sampleHtmlFlow from the Self-Define File List at the beginning. Input the
JSP Source Directory, for example C:\temp\jsp, and select Invoker Type as
Both, as shown in Figure 5-10 on page 113. Click Next or Finish. (After
setting the properties for one definition file for migration, if you want to
customize another file, click Next. This will take you to the beginning file list
panel. If you have configured all the files, click Finish.)

To carry out migration again, you should restart WebSphere Studio
Application Developer Integration Edition.

112 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 5-10 Self-Define File Migration

5.2.7 Migrating tooling artifacts
Apart from migrating the version 4.3 definitions and runtime components to
version 5.1 constructs, the migration tool can also generate artifacts that can be
used with toolkit version 5.1 to further develop or maintain your application. This
function can generate a Graphical Builder file. When you open the file with
Graphical Builder, you will see the components and definitions you migrated in
the Graphical Builder views.

Note: Business processes do not automatically chain process contexts
(equivalent to operation contexts and flow processor contexts in version 4.3) to
session contexts. You should chain the process contexts to session contexts
manually.

 Chapter 5. Migrating an application 113

To generate tooling artifacts with the migration tool, perform the following tasks:

1. From the Package Explorer view, right-click your migration project,
BaseSampleMigration, and select BTT Migration → BTT Tooling Artifact
Generate.

2. From the Branch Transformation Toolkit Tooling Artifact Generate dialog box,
select the screen flows, business processes, and Single Action EJBs from
which you want to generate the tooling artifacts. For our sample, select
sampleHtmlFlow.

Figure 5-11 BTT Tooling Artifact Generate

3. Click Finish.

You will now find the Graphical Builder file (.eete) file in your migration project.
Double-click the Graphical Builder file to start the Graphical Builder. You can
see that the components you selected for artifacts generation are present,
represented by Graphical Builder nodes.

5.2.8 Diagnosis for the migration tool
The migration tool places the messages into a log file named BTT_Migration.log.
The file is placed in C:\. When something appears to be wrong in the migration
process, check the log file to see the reason and carry out the necessary actions
to make the migration tool work. This list represents the more common errors:

� The entity path is set as fromJAR. The migration tool does not support the
path information set as fromJAR.

114 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� Class not found. It is usually caused because the jar file of the application is
not found in the plug-in directory, the plugin.xml file is not set correctly, or the
class is not packaged in the jar files.

� Branch Transformation Toolkit environment initialization error. It is usually
caused because the definition files are not defined correctly.

� The JSP path is not correct.

5.3 Manual modification for migration
In this section we explain some manual modifications that we made to the
migration files. Our purpose is to provide examples of how to complete a
successful migration because the migration tools cannot automatically complete
everything that may be required to migrate an application.

5.3.1 Modifying the generated definition files
Because automated migration tools cannot do everything, some changes have to
be applied manually to the generated files. In our sample, they are located in the
5.1 Definitions folder of the BaseSampleMigration project. Before modifying the
generated files, we recommend that you back up all the definition files. The
modifications that we made include:

1. Modify the dse* definition files.

a. For the dsedata.xml, find the customerSearchData kColl definition, add
items <refData refId="CustomerId" /> and <refData
refId="AccountNumber" /> to this kColl definition.

The result should look as shown in Figure 5-12.

Figure 5-12 Modifying dsedata.xml

You can also use Graphical Builder to do this work in CHA Data View.

<kColl id="customerSearchData" >
<refData refID="TrxId" value="Tx00" />
<refData refID="TrxReplyCode" />
<refData refID="TrxErrorMessage" />
<refData refID="CustomerId" />
<refData refID="AccountNumber" />

</kColl>|

 Chapter 5. Migrating an application 115

b. For dsesrvce.xml, change the content to that shown in Example 5-3 on
page 116.

Example 5-3 Modifying desesrvce.xml

<?xml version="1.0" encoding="UTF-8"?>
<dsesrvce.xml>
 <DummyDB2Journal autoCommit="false" id="Journal" schema="SCHEMA01">
 <column dataName="UserId" id="USERID"/>
 <column dataName="TID" id="TERMINALID"/>
 <column dataName="HostBuff" id="DATABUFFER"/>
 </DummyDB2Journal>
 <DummyDB2Journal autoCommit="false" id="Journal2" schema="SCHEMA01">
 <column dataName="UserId" id="USERID"/>
 <column dataName="TID" id="TERMINALID"/>
 <column dataName="HostBuff" id="DATABUFFER"/>
 </DummyDB2Journal>
 <GenericPoolService id="GenericPool" serviceName="Journal2" initialSize="2"
maxPoolSize="10" timeBetweenRetries="2000"/>
</dsesrvce.xml>

2. Copy the dse* files to the server.

Copy all the dse* files, including dse.ini, dsectxt.xml, dsedata.xml,
dsesvrce.xml, and dsetype.xml from BaseSampleMigration → 5.1
Definitions to the c:\dse directory. This is the default directory accepted by
the application. To change to another location, make the corresponding
changes in the definition files.

5.3.2 Creating a CHA database
The CHA provides context functionality in a distributed server environment. This
enables Branch Transformation Toolkit applications to have distributed runtime
repositories so that they can share information with other applications.
Non-toolkit applications can use the CHA as a way of holding general global
session information. Figure 5-13 on page 117 shows an overview of how Branch
Transformation Toolkit applications use the CHA.

116 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 5-13 CHA overview

To fulfill the functionality of the CHA in Branch Transformation Toolkit 5.1
applications, a database is required. Branch Transformation Toolkit 5.1 supports
most database systems. This versabilty makes it easy for you to select a
database according to your application situation.

We do not provide specific database setup instructions in our redbook because
these depend on the database product you choose to use. Consult the product
documentation provided by your database vendor for detailed instructions. For
the information about DB2 Universal Database™ 8.2 installation and
configuration, refer to the DB2 manual.

Although most database systems are acceptable, in our sample, we presume
that you are using IBM DB2 Universal Database 8.2.

To configure CHA with DB2 the steps to follow are:

1. Create a database named SAMPLE.

Select Start → All programs → IBM DB2 → Command Window, open the
DB2 Command Window, enter:

DB2 CREATE DATABASE SAMPLE

CHASession

CHAInstance

Context

Database

JDBC

Persistence
data store

RMI

RMI

Create/Find CHAInstance

CHA Server
EJB Container

remote Context
CHASession local or
remote interface
CHAInstance local or
remote interface

local Context
Private data collection
and attribute

CHA Façade

BTT Clients
Struts, BPs, etc.

 Chapter 5. Migrating an application 117

2. Locate the table creating script.

In the DB2 Command Window, change your current directory to the same
folder as the createCHATables.ddl file, which is provided by the Branch
Transformation Toolkit 5.1 Toolkit, for example, C:\IBM\WebSphere
Studio\Branch Transformation Toolkit
5.1.0.1\dbtools\Windows\DB2\tableDefinition\cha\

3. Connect to the SAMPLE database.

In the DB2 Command Window, type the following:

DB2 CONNECT TO SAMPLE USER username USING password

Replace the username and password according to your DB2 account
information. In this sample, we presume the username and password are
both db2admin. Ensure that you have enough privilege in the database. You
will see some basic database information after getting connected.

4. Create tables using the DDL script file.

In the DB2 Command Window, enter the following:

DB2 -tvf createCHATables.ddl

Look for messages indicating that tables CHAInstance, CHAChildren, and
CHAControl have been created successfully.

After completing this task, you can check the DB2 system using the DB2
control center. You can see the newly created database SAMPLE containing
three tables: CHAChildren, CHAControl, and CHAinstance.

5.3.3 Fixing errors
After migrating the application from version 4.3 to version 5.1, you are likely to
encounter errors in related projects. You might have to perform certain
modifications to fix errors such as code problems, package names, access to the
context, the data elements, the format, the JDBC services, and so on.

In addition to this, you need add the business logic by moving the code from the
source code of the current application, unless the project team has already
enhanced the migration tool to have the capability to copy the business logic into
the generated code. You should also build the services that version 5.1 does not
support, and change the access to the communication service to use JCA as is
now required. Details and instructions pertaining to these activities are detailed in
the remaining chapters of this book.

118 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Chapter 6. Post-migration activities

This chapter discusses several post-migration activities that have to be handled
to finish the migration of the sample project

We describe the following topics:

� 6.1, “Sample project requirements” on page 120
� 6.2, “Importing the required EARs for version 5.1” on page 124
� 6.3, “Preparing the client and the server” on page 132
� 6.4, “Adding and modifying code” on page 153

6

© Copyright IBM Corp. 2006. All rights reserved. 119

6.1 Sample project requirements
In our sample, although we fixed the errors caused by migration, as described at
the end of Chapter 3, “Planning a Branch Transformation Toolkit migration” on
page 57, many unsolved errors continued to remain in the new project. Before
continuing with the post-migration work, the following actions should be
performed to meet the project's requirements.

The migration tool does not automatically migrate everything from version 4.3 to
version 5.1. Under certain conditions, you have to migrate some things manually:

� The base functionality of the migration tool will not migrate the logic inside the
application code of the server operations and the actions of the flow process.

If you have not customized the migration tool to include the process for
moving the logic to the generated code, you must move it manually.

� Services migration is not included in the migration tool.

If there are any services in version 4.3 application that are out of the scope of
the version 5.1 system, you should migrate them manually.

� The server side event mechanism of version 5.1 is changed and is not
migrated by the migration tool.

You must migrate it manually.

� The communication service access is changed to use a JCA connector.

You must manually modify it in the Single Action EJB or the activity of
business process.

6.1.1 Copying the required JAR files to the BaseSample project
Copy the following JAR files to the BaseSample project from the BTTv51_dir\jars
directory. Here, BTTv51_dir is the Branch Transformation Toolkit 5.1 installing
packaging path, for example, C:\IBM\WebSphere Studio\Branch Transformation
Toolkit 5.1.

� bttbase.jar
� bttevent.jar
� bttfmt.jar
� bttjdbjsvc.jar
� bttjdbtsvc.jar
� bttsvcinfra.jar
� bttsvrbean.jar
� bttsvrflow.jar
� dseb.jar
� dsecsm.jar

120 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� dsecss.jar
� dsed.jar
� dseflp.jar
� dseflpeclt.jar
� dsegb.jar
� dsejxpsvc.jar
� dsesci.jar
� dsesym.jar
� dsetde.jar
� sn0dummy.jar

In our sample, sn0dummy.jar could be extracted from dummysnalu0.rar within
the same folder. Extract C:\IBM\WebSphere Studio\Branch Transformation
Toolkit 5.1\jars\dummysnalu0.rar, and then copy sn0dummy.jar to the
BaseSample project. See Figure 6-1.

Figure 6-1 Sample project JAR files

6.1.2 Copying the response.res file to the BaseSampleWeb project
Copy response.res from the BTT5.1 installpackaging path, for example,
C:\IBM\WebSphere Studio\Branch Transformation Toolkit 5.1\
samples\JavaSampleApplication\StandAlone\ BTTJavaSample.ear, to the
WebContent directory of the BaseSampleWeb project.

 Chapter 6. Post-migration activities 121

In our sample, the file response.res is a host reply file, and will be used by the
DummyLu0SnaSession service when the server has to simulate host reply. See
Figure 6-2.

Figure 6-2 Sample project Web content

6.1.3 Creating a Java project to include user-defined classes
To create and modify a Java project, follow these steps:

1. From the main menu, select File → New → Other..., and use the wizard to
create a Java project named UserDefineJar. Click Finish. The user-defined
services will be contained in the UserDefineJar. See Figure 6-3 on page 123.

122 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-3 Create Java project

2. Under this project, create a package named com.ibm.dse.samples.appl, and
copy three Java files, HostDecorator.java, HostField.java,
HostStringFormat.java from the com.ibm.dse.samples.appl package of the
DSE_SampleApplicationWeb project in the Branch Transformation Toolkit 4.3
Base Sample Application's workspace, to this package.

6.1.4 Modifying invoker's properties files
In our sample, since SAE is used as the server business operation, you require
an invoker to execute the SAE. During the migration process, modify the
properties files to make the bean invoker work.

1. Expand BaseSampleWeb project in J2EE perspective’s Project Navigator
view, and browse to the folder

 Chapter 6. Post-migration activities 123

JavaResources\accountStatementServerOp.invoker.java. Open the file
accountStatementServerOpOP.properties to edit.

a. Change the last line from "isLocal=true" to "isLocal=false".
b. Append a new line: "csReplyFormat=accountStatementRepFmt".

Similarly, four more properties files should be modified.

2. In BaseSampleWeb project, browse to the folder JavaResources\
com.ibm.dse.samples.appl.invoker.java, and open the file
startupServerOpOP.properties to edit.

a. Change the last line from "isLocal=true" to "isLocal=false".
b. Append a new line: "csReplyFormat= startupReqFmt".

3. In BaseSampleWeb project, browse to the folder JavaResources\
customerSearchServerOp.invoker.java, and open the file
customerSearchServerOpOP.properties to edit.

a. Change the last line from "isLocal=true" to "isLocal=false".
b. Append a new line: "csReplyFormat= customerSearchRepFmt".

4. In BaseSampleWeb project, browse to folder JavaResources\
depositServerOp.invoker.java, and open the file
depositServerOpOP.properties to edit.

a. Change the last line from "isLocal=true" to "isLocal=false".
b. Append a new line: "csReplyFormat= depositRepFmt".

5. In BaseSampleWeb project, browse to the folder JavaResources\
withdrawalServerOp.invoker.java, and open the file
withdrawalServerOpOP.properties to edit.

a. Change the last line from "isLocal=true" to "isLocal=false".
b. Append a new line: "csReplyFormat= withdrawalRepFmt".

6.2 Importing the required EARs for version 5.1
This section describes all the EAR files that must be imported into our application
to complete the migration.

6.2.1 Importing the BTTFormatter.ear
To import the BTTFOrmatter.ear file, follow these steps:

124 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

1. From the main menu, select File → Import..., select the EAR File and browse
to the installation package path, for example, C:\IBM\WebSphere Studio\
Branch Transformation Toolkit 5.1\ear. Choose the file BTTFormatter.ear
and click Finish. See Figure 6-4 and Figure 6-5 on page 126.

Figure 6-4 Import EAR file

 Chapter 6. Post-migration activities 125

Figure 6-5 Import BTTFormatter.ear

126 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. Deploy the EJB code.

In the J2EE perspective, notice that a few BTTFormatter-related projects are
created. Right-click the BTTFormatterEJB project, and select Generate →
Deployment and RMIC Code... in the pop-up menu. In the next window, click
Select All, and then click Finish. See Figure 6-6 on page 127.

Figure 6-6 Generate EJB deployment code

Similarly, three more EAR files are imported in the next sections.

6.2.2 Importing BTTServicesInfra.ear
To import BTTServiceInfra.ear, follow these steps:

 Chapter 6. Post-migration activities 127

1. From the main menu, select File → Import..., select the EAR File and browse
to the installation packaging path such as C:\IBM\WebSphere Studio\ Branch
Transformation Toolkit 5.1\ear, choose the file BTTServicesInfra.ear, and
click Finish. See Figure 6-7.

Figure 6-7 Import BTTServicesInfra.ear

128 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. Deploy the EJB code.

In the J2EE perspective, notice that a few BTTFormatter-related projects are
created. Right-click the bttsvcinfra project, and select Generate →
Deployment and RMIC Code... in the pop-up menu. In the next window, click
Select All, and then click Finish. See Figure 6-8 on page 129.

Figure 6-8 Generate EJB deploy code for BTTServicesInfra.ear

 Chapter 6. Post-migration activities 129

6.2.3 Importing BTTCHAEAR.ear
From the main menu, select File → Import..., select the EAR File and browse to
the installation packaging path such as C:\IBM\WebSphere Studio\ Branch
Transformation Toolkit 5.1\ear, choose the file BTTCHAEAR.ear, and click
Finish. See Figure 6-9.

Figure 6-9 Import BTTCHAEAR.ear,

130 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

6.2.4 Importing dummysnalu0.rar
From the main menu, select File → Import..., select the RAR File and browse to
the installation packaging path such as C:\IBM\WebSphere Studio\ Branch
Transformation Toolkit 5.1\jars, choose the file dummysnalu0.rar. Make sure the
“Standalone connector project” option is checked, and click Finish. See
Figure 6-10 and Figure 6-11 on page 132.

Figure 6-10 Import connector

 Chapter 6. Post-migration activities 131

Figure 6-11 Import dummysnalu0.rar

6.3 Preparing the client and the server
In this phase, you should create the application client and server for use by the
Branch Transformation Toolkit 5.1 version of the application.

132 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

6.3.1 Creating the client
To create the client, follow these steps:

1. Export the application client from the Branch Transformation Toolkit 4.3
workspace.

Open the Branch Transformation Toolkit 4.3 workspace of WebSphere Studio
Application Developer Integration Edition. In this workspace, right-click
DSE_SampleApplicationClient project. From the pop-up menu, choose
Export... For the type, choose App Client JAR file. Click Next. In the next
window, choose where to save, for example, C:\temp, and check Export
source files. Click Finish. See Figure 6-12 and Figure 6-13 on page 134

Figure 6-12 Exporting the application client

 Chapter 6. Post-migration activities 133

Figure 6-13 Export application client source files

Note: Do not close the Branch Transformation Toolkit 4.3 workspace of
WebSphere Studio Application Developer Integration Edition. It will be
used later.

134 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. Import the application client into the migration workspace.

In the Branch Transformation Toolkit 5.1 migration workspace, from the main
menu, select File → Import..., choose App Client JAR file, and click Next. In
the next window, browse to the DSE_SampleApplicationClient.jar file, and
from the EAR project drop-down list, select BaseSample. Click Finish. See
Figure 6-14 and Figure 6-15 on page 136.

Figure 6-14 Import application client

 Chapter 6. Post-migration activities 135

Figure 6-15 Import application client from the file system

136 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3. Migrate the sample client to a Branch Transformation Toolkit 5.1 client
project.

Right-click the DSE_SampleApplicationClient project in the Branch
Transformation Toolkit 5.1 migration workspace. In the pop-up menu, select
Migrate → J2EE Migration Wizard..., read the information, and click Next. In
the next window, make sure the DSE_SampleApplicationClient project is
selected, and click Finish. See Figure 6-16

Figure 6-16 Migrate sample client project

6.3.2 Copying client definition files
Copy the Branch Transformation Toolkit 4.3 application client definition files to
the migration project for future use.

 Chapter 6. Post-migration activities 137

1. In the J2EE perspective of the migration project, expand the
BaseSampleWeb project. Under the WebContent folder, create a new folder
named dse. Within the dse folder, create two other folders, client and
desktop. The resulting file structure should look as displayed in Figure 6-17:

Figure 6-17 File structure for client project

2. In the J2EE perspective of the Branch Transformation Toolkit 4.3 project,
expand the DSE_SampleApplicationWeb project. Copy the following files
from DSE_SampleApplication\DSE_SampleApplicationWeb\WebContent\
dse\ client to BaseSampleWeb\WebContent\dse\client of the migration
workspace:

– dsectxt.xml
– dsedata.xml
– dsefmts.xml
– dseoper.xml
– dsesrvce.xml
– dsetype.xml

138 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The resulting file structure should look as shown in Figure 6-18:

Figure 6-18 Files for DSE client

3. In the J2EE perspective of the Branch Transformation Toolkit 4.3 project,
expand the DSE_SampleApplicationWeb project. Copy the following files
from
DSE_SampleApplication\DSE_SampleApplicationWeb\WebContent\dse\
desktop to BaseSampleWeb\WebContent\dse\desktop of the migration
workspace:

– desktop.dtd
– desktop.xml

 Chapter 6. Post-migration activities 139

The resulting file structure should look as shown in Figure 6-19:

Figure 6-19 Desktop files

4. In the J2EE perspective of the Branch Transformation Toolkit 4.3 project,
expand the DSE_SampleApplicationWeb project. Copy the file dse.ini from
DSE_SampleApplication\DSE_SampleApplicationWeb\WebContent\dse to
BaseSampleWeb\WebContent\dse of the migration workspace.

140 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The file structure should look as shown in Figure 6-20:

Figure 6-20 File location for dse.ini

5. In the J2EE perspective of the Branch Transformation Toolkit 4.3 project,
expand the DSE_SampleApplicationWeb project. Copy the following files
from Branch Transformation Toolkit 5.1 installation packaging's path such as
C:\IBM\WebSphere Studio\Branch Transformation Toolkit 5.1\
samples\JavaSampleApplication\StandAlone\ BTTJavaSample.ear to
BaseSampleWeb\Java Resources of the migration workspace:

– commssample.properties
– desktopsample.properties
– javaclient.properties
– sampleappl.properties
– sampleappserver.properties

The resulting file structure should look as shown in Figure 6-21 on page 142.

Note: Extract BTTJavaSampleClient.jar in BTTJavaSample.ear to get the
properties files.

 Chapter 6. Post-migration activities 141

Figure 6-21 Properties file location

6. Modify the definitions in the dse.ini file.

Since Branch Transformation Toolkit 5.1 sever client structure is different
from Branch Transformation Toolkit 4.3, some definitions have to be
changed.

Open BaseSampleWeb\WebContent\dse, and in the dse.ini file, make
changes in the Field elements according to that shown in Table 6-1.

Table 6-1 Field elements in the des.ini

Field ID Old Value New Value

CsAssignServletName /servlet/com.ibm.dse.cs.se
rvlet.CSAssignServiceIdA
ndServerTIDProtocolServl
et

/servlet/com.ibm.btt.cs.ser
vlet.CSAssignServiceIdAn
dServerTIDProtocolServle
t

csReqProtocolServletNam
e

/servlet/com.ibm.dse.cs.se
rvlet.CSReqProtocolServl
et

/servlet/com.ibm.btt.cs.ser
vlet.CSReqProtocolServle
t

csNotifClToSrvServletNam
e

/servlet/com.ibm.dse.cs.se
rvlet.CSNotifClToSrvProto
colServlet

/servlet/com.ibm.btt.event.
CSNotifClToSrvProtocolS
ervlet

142 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

6.3.3 Creating a server
To create a server environment to test your migrated project, you should create a
server and its configuration, and then deploy the CHA EJB code.

Server and configuration
To create the server and its configuration, follow these steps:

1. In the migration workspace, change to the Server perspective.

2. From the main menu, select File → New → Server and Server
Configuration. In the next window, input BaseSample for the Server name,
and select Integration Test Environment for the Server type. Click Finish.
See Figure 6-22 on page 144.

csNotifSrvToClServletNam
e

/servlet/com.ibm.dse.cs.se
rvlet.CSNotifSrvToClProto
colServlet

/servlet/com.ibm.btt.event.
CSNotifSrvToClProtocolS
ervlet

Field ID Old Value New Value

 Chapter 6. Post-migration activities 143

Figure 6-22 Creat a new server

3. Double-click BaseSample server in the Server panel to configure.

4. In the Security tab, click Add to insert two JAAS authentication entries as
shown in Table 6-2.

Table 6-2 JAAS authentication entries

Alias User ID Password

CHA DB2_username DB2_password

sna sna sna

144 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-23 shows the dialog used to create a JAAS authentication entry.

Figure 6-23 Add JAAS authentication

5. In the Data Source tab, click Add to insert an item in the JDBC provider list.
For Database type, select IBM DB2, and for JDBC provider type, select DB2
JDBC Provider (XA), and click Next. See Figure 6-24.

Figure 6-24 Create a JDBC provider

6. In the next window, eneter DB2 JDBC XA for the name. Click Finish. See
Figure 6-25 on page 146.

 Chapter 6. Post-migration activities 145

Figure 6-25 JDBC provider details

7. In the Data Source tab, select DB2 JDBC XA from the JDBC provider list,
and click Add to create a data source. In the pop-up window, select DB2
JDBC Provider (XA) for the type of JDBC provider, and select version 5.0
data source for the data source type. Click Next. See Figure 6-26 on
page 147.

146 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-26 Create a DataSource

8. In the next window, input CHADataSource as the name, jdbc/CHADataSource
as the JNDI name, and from the drop-down list, choose CHA for both
component-managed and container-managed authentication alias. Leave the
remaining values as default. Click Finish. See Figure 6-27 on page 148.

 Chapter 6. Post-migration activities 147

Figure 6-27 DataSource details

9. In the J2C tab, click Add to insert an item in the J2C Resource Adapters.
Ensure that dummysnalu0Connector is displayed as the Resource Adapter
Name, and click OK. See Figure 6-28 on page 149.

148 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-28 Create a resource adapter

10.In the J2C tab, select dummysnalu0Connector from the J2C Resource
Adapters, and click Add to create an item in the J2C Connection Factories. In
the pop-up window, type snalu0 as the name and the JNDI name, select
FailingConnectionOnly as the Purge Policy, and from the drop-down list,
select sna as container-managed and component-managed authentication
aliases. Leave the remaining values as default. Click OK. See Figure 6-29 on
page 150.

 Chapter 6. Post-migration activities 149

Figure 6-29 Create a connection factory

11.In the same tab, change the content of Resource Properties to
dummysnalu0Connector. Change the value of both userName and
userPassword to sna, and change the value of TestFile to
http://127.0.0.1:9080/BaseSampleWeb/response.res.

See Figure 6-30.

Figure 6-30 Resource properties

12.Save the server configuration and close the Server Configuration Content
Editor.

150 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

CHA deployment
To deploy the CHA, follow these steps:

1. Change the Project Navigator view to J2EE perspective. Right-click the
BTTCHAEJB project, and from the the pop-up menu, select Generate →
EJB to RDB Mapping..., then click Next to create a new backend folder.
Select Top Down in the next window. Click Next. See Figure 6-31

Figure 6-31 Generate EJB to RDB mapping

In the next window, select the database type and input the schema you installed
on your server. Click Finish. See Figure 6-32 on page 152.

 Chapter 6. Post-migration activities 151

Figure 6-32 Mapping details

2. Right-click the BTTCHAEJB project. From the pop-up menu select
Generate → Deployment and RMIC Code.... Click Select All and Finish.
See Figure 6-33 on page 153

152 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-33 Generate deployment code

6.4 Adding and modifying code
In this section we describe some of the code additions and modifications you
must make to successfully complete the migration.

6.4.1 Business logic layer
This section describes how the business logic layer needs to be altered in order
to complete the migration.

Configuring the business process
To configure the business process, follow these steps:

1. Open the application.xml file in the META-INF folder of the BaseSample
project in J2EE perspective. In the Module tab, click Add to include following
modules:

– BTTCHAEJB
– BTTCHAWeb

 Chapter 6. Post-migration activities 153

– BTTFormatterEJB
– bttsvcinfra
– BTTServiceInfraWeb
– DSE_SampleApplicationClient

2. Click Add in the lower panel to add Project Utility JARs. Select
UserDefineJar and BaseSampleProcess project separately. Save and
close the file. See Figure 6-34.

Figure 6-34 Add utility JARs

3. Right-click the BaseSampleProcess project. In the pop-up menu, select
New → Package to create a package named
com.ibm.btt.samples.services. Then create two Java classes named
DummyJournal and DummyJournalImpl in that package. See the source code in

154 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Appendix A, “Branch Transformation Toolkit development and runtime
requirements” on page 477 and Appendix B, “Setting up a Branch
Transformation Toolkit sample application” on page 493.

4. Right-click the BaseSampleProcess project, and in the pop-up menu, select
Properties. Select Java JAR Dependencies, and add the following JARs as
dependencies:

– bttbase.jar
– bttfmt.jar
– bttjdbjsvc.jar
– bttjdbtsvc.jar
– bttsvcinfra.jar
– bttsvrbean.jar
– bttsvrflow.jar
– sn0dummy.jar
– UserDefineJar.jar

Click OK. See Figure 6-35

Figure 6-35 JAR dependencies

 Chapter 6. Post-migration activities 155

5. Implement the snippets for the customerSearchServerOp business process.

Expand the BaseSampleProcess project, and find the package named
customerSearchServerOp.snippets. There are three Java files inside:
initial.java, state2.java, and state3.java. Migration Tools only provides
template for these classes. You should implement them depending on their
business logic.

– Code modification of initial.java

Add the required import class code in Example 6-1 on top:

Example 6-1 Import class code for initial.java

import com.ibm.btt.base.Context;
import com.ibm.btt.formatter.client.FormatElement;
import com.ibm.btt.services.jdbcjournalservice.Journal;
import com.ibm.dse.samples.appl.HostField;

In execute() method, add this code in Example 6-2:

Example 6-2 Additional code for initial.java execute() method

try{
 Context bpContext = getContext() ;
 if(bpContext.getParent() == null){
 Context parent =
Context.getContextByInstanceID(getSystemData().getInstanceId()) ;
 bpContext.chainTo(parent);
 }

 Journal journal;
 String hostBuff =
((FormatElement)getFormat("customerSearchSendFmt")).format(getContext())
;
 setValueAt("HostBuff",hostBuff);
 // writes to the journal using the appropriate format
 journal = (Journal)getService("JournalService");
 journal.addRecord(getContext(),"preSendJournalFmt");//$NON-NLS-1$
 journal.releaseServiceRequester();
 } catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to "return 1".

– Code modification of state2.java

Add the required import class code in Example 6-3 on top.

156 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Example 6-3 Import class code for state2.java

import java.util.Hashtable;
import javax.resource.cci.*;
import com.ibm.btt.base.*;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0ConnectionSpec;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0InteractionSpec;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0Record;
import com.ibm.btt.services.*;
import com.ibm.btt.services.jdbcjournalservice.Journal;
import com.ibm.btt.formatter.client.FormatElement;

In execute() method, add the code in Example 6-4.

Example 6-4 Additional code for state2.java execute() method

try{
 javax.naming.Context initialContext = null;
 ConnectionFactory connectionFactory = null;

 if (initialContext == null) {
 initialContext = new javax.naming.InitialContext();
 connectionFactory = (ConnectionFactory)
initialContext.lookup("snalu0");
 }
 // START TRANSACTION
 long begin = System.currentTimeMillis();

 // For testing Component-managed authentication.
 DummyLu0ConnectionSpec lu0ConnectionSpec = new
DummyLu0ConnectionSpec();
 lu0ConnectionSpec.setUserName("sna");
 lu0ConnectionSpec.setPassword("sna");
 Connection connection =
connectionFactory.getConnection(lu0ConnectionSpec);
 System.out.println("connection created...");

 // Beginning of testing SYNC_SEND_RECEIVE
 Interaction interaction = connection.createInteraction();
 System.out.println("interaction created...");
 DummyLu0InteractionSpec interactionSpec = new
DummyLu0InteractionSpec();

 DummyLu0Record in = new DummyLu0Record();
 DummyLu0Record out = new DummyLu0Record();

 in.setData((String) getValueAt("HostBuff"));

interactionSpec.setInteractionVerb(InteractionSpec.SYNC_SEND_RECEIVE);

 Chapter 6. Post-migration activities 157

 interactionSpec.setExecutionTimeout(10000);

 interaction.execute(interactionSpec, in, out);
 System.out.println("data from host: " + out.getData());

 interaction.close();
 System.out.println("interaction closed...");
 connection.close();
 System.out.println("connection closed...");

 System.out.println("Before using customerSearchRecFmt to do the
format") ;
 com.ibm.btt.formatter.client.FormatElement fromHost =
(com.ibm.btt.formatter.client.FormatElement)
getFormat("customerSearchRecFmt"); //$NON-NLS-1$

 System.out.println("After using customerSearchRecFmt to do the
format") ;

 fromHost.unformat(out.getData(),getContext());

System.out.println("CustomerName==============="+getContext().tryGetElem
entAt("CustomerName"));
 System.out.println("session context
value=="+getContext().getParent().getKeyedCollection());
 System.out.println("AccountTransfer : executeSendHostStep ok!");

 }catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to "return 1".

– Code modification of state3.java

Add the required import class code in Example 6-5 on top:

Example 6-5 Import class code for state3.java

import com.ibm.btt.services.jdbcjournalservice.JDBCJournal;
import com.ibm.btt.services.jdbcjournalservice.Journal;

In execute() method, add the code in Example 6-6:

Example 6-6 Additional code for state3.java execute() method

try{
 Journal journal;
 journal = (Journal)getService("JournalService");
 //journal.addRecord(getContext(),

158 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

"customerSearchRecFmt");//$NON-NLS-1$
 journal.addRecord(getContext(), "afterRecJournalFmt");//$NON-NLS-1$
 journal.releaseServiceRequester();
}catch(Exception e){
 e.printStackTrace();
}

Change "return 0" to" return 1";

For the source code, refer to Appendix A, “Branch Transformation Toolkit
development and runtime requirements” on page 477 and Appendix B,
“Setting up a Branch Transformation Toolkit sample application” on
page 493.

6. Modify the BPEL file for the customerSearchServerOp Business Process.

Find the package named customerSearchServerOp, and double-click
customerSearchServerOp.bpel to edit.

Select customerSearchServerOp. Its properties are displayed in the lower
panel. Select Environment, and change the ContextMode to remote. Also
add TrxReplyCode, accounts, TrxErrorMessage to the MapList. See
Figure 6-36 on page 160.

Note: Do not leave white spaces after the comma.

 Chapter 6. Post-migration activities 159

Figure 6-36 Modify the business process environment properties

In the editor, select initial → Implementation. Delete the second line of
code. See Figure 6-37 on page 161.

160 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-37 Modify implementation for the initial activity

In the same way, select state2 → Implementation. Delete the second line of
the code. Save and close the BPEL file.

7. Modify the WSDL file for customerSearchServerOp business process.

In the same package, open customerSearchServerOpInterface.wsdl with
Source Editor. Add a new line in the message tag named InputMessage:

<part name="CustomerId" type="xsd:string" />

The result looks as follows:

<message name="InputMessage">
 <part name="systemData" type="xsd1:BTTSystemData"/>
 <part name="CustomerId" type="xsd:string" />
</message>

Save and close customerSearchServerOpInterface.wsdl.

 Chapter 6. Post-migration activities 161

8. Implement the snippets for depositServerOp business process.

Expand the BaseSampleProcess project, and find the package named
depositServerOp.snippets. Edit three Java files inside: initial.java,
state2.java, and state3.java.

For depositServerOp.snippets.initial, add the code in Example 6-7 to the
import class code on top.

Example 6-7 Import class code for depositServerOP.snippets.initial

import com.ibm.btt.base.Context;
import com.ibm.btt.formatter.client.FormatElement;
import com.ibm.btt.server.flow.al.workarea.BPWorkArea;
import com.ibm.btt.services.jdbcjournalservice.JDBCJournal;
import com.ibm.btt.services.jdbcjournalservice.Journal;
import com.ibm.websphere.workarea.UserWorkArea;

In execute() method add the code in Example 6-8.

Example 6-8 Additional code for depositServerOP.snippets.initial execute() method

try{
 if(getContext().getParent()==null)

getContext().chainTo(Context.getContextByInstanceID(getSystemData().getInst
anceId()));
 Journal journal;

setValueAt("HostBuff",((FormatElement)getFormat("depositSendFmt")).format(g
etContext()));//$NON-NLS-2$//$NON-NLS-1$
 journal = (Journal)getService("JournalService");
 journal.addRecord(getContext(),"preSendJournalFmt ");//$NON-NLS-1$
 journal.releaseServiceRequester();
 System.out.println("Deposit : executeJournalHostRequestDataStep ok!");
 } catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to" return 1".

For depositServerOp.snippets.state2, add the code in Example 6-9 to import
class code on top:

Example 6-9 Import class code for depositServerOp.snippets.state2

import java.util.Hashtable;
import javax.resource.cci.*;
import com.ibm.btt.base.*;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0ConnectionSpec;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0InteractionSpec;

162 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

import com.ibm.btt.samples.business.sna.lu0.DummyLu0Record;
import com.ibm.btt.services.*;
import com.ibm.btt.services.jdbcjournalservice.Journal;
import com.ibm.btt.formatter.client.FormatElement;

In execute() method add the code in Example 6-10.

Example 6-10 Additional code for depositServerOp.snippets.state2 execute() method

try{
 javax.naming.Context initialContext = null;
 ConnectionFactory connectionFactory = null;

 if (initialContext == null) {
 initialContext = new javax.naming.InitialContext();
 connectionFactory = (ConnectionFactory)
initialContext.lookup("snalu0");
 }
 // START TRANSACTION
 long begin = System.currentTimeMillis();

 DummyLu0ConnectionSpec lu0ConnectionSpec = new
DummyLu0ConnectionSpec();
 lu0ConnectionSpec.setUserName("sna");
 lu0ConnectionSpec.setPassword("sna");
 Connection connection =
connectionFactory.getConnection(lu0ConnectionSpec);
 System.out.println("connection created...");

 // Beginning of testing SYNC_SEND_RECEIVE
 Interaction interaction = connection.createInteraction();
 System.out.println("interaction created...");
 DummyLu0InteractionSpec interactionSpec = new
DummyLu0InteractionSpec();

 DummyLu0Record in = new DummyLu0Record();
 DummyLu0Record out = new DummyLu0Record();

 in.setData((String) getValueAt("HostBuff"));

interactionSpec.setInteractionVerb(InteractionSpec.SYNC_SEND_RECEIVE);
 interactionSpec.setExecutionTimeout(10000);

 interaction.execute(interactionSpec, in, out);

 System.out.println("data from host: " + out.getData());

 Chapter 6. Post-migration activities 163

 interaction.close();
 System.out.println("interaction closed...");
 connection.close();
 System.out.println("connection closed...");

 com.ibm.btt.formatter.client.FormatElement fromHost =
(com.ibm.btt.formatter.client.FormatElement) getFormat("depositRecFmt");
//$NON-NLS-1$
 fromHost.unformat(out.getData(),getContext());

 }catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to" return 1".

For depositServerOp.snippets.state3, add the import class code in
Example 6-11 on top:

Example 6-11 Import class code for depositServerOpsnippets.state3

import com.ibm.btt.services.jdbcjournalservice.JDBCJournal;
import com.ibm.btt.services.jdbcjournalservice.Journal;

In execute() method add code in Example 6-12.

Example 6-12 Additional code for depositServerOpsnippets.state3

try{
 Journal journal;
 journal = (Journal)getService("JournalService");
 journal.addRecord(getContext(), " afterRecJournalFmt");//$NON-NLS-1$
 journal.releaseServiceRequester();

 }catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to"return 1".

For the complete source code, refer to Appendix A, “Branch Transformation
Toolkit development and runtime requirements” on page 477 and Appendix B,
“Setting up a Branch Transformation Toolkit sample application” on page 493.

9. Modify the BPEL file for depositServerOp business process.

a. Find the package named depositServerOp, and double-click
depositServerOp.bpel to edit.

b. Select depositServerOp. Its properties are displayed in the lower panel.
Select Environment, change the ContextMode to remote, and add

164 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

"TrxReplyCode, AccountBalance, TrxErrorMessage" to the MapList. See
Figure 6-38.

• In the editor, select initial → Implementation. Delete the second line
of the code.

• In the same way, select state2 → Implementation. Delete the second
line of the code.

Save and close the depositServerOp.bpel file.

Figure 6-38 Modify environment property

 Chapter 6. Post-migration activities 165

10.Modify the *.wsdl file for the depositServerOp business process.

In the same package, open depositServerOpInterface.wsdl with Source
Editor. Add two new lines in the message tag named InputMessage, as in
Example on page 166.

<part name="Amount" type="xsd:string" />
<part name="AccountNumber" type="xsd:string" />

The result should look as follows:

<message name="InputMessage">
 <part name="systemData" type="xsd1:BTTSystemData"/>
 <part name="Amount" type="xsd:string" />
 <part name="AccountNumber" type="xsd:string" />
</message>

Save and close depositServerOpInterface.wsdl..

11.Implement the snippets for the withdrawalServerOp business process.

Expand the BaseSampleProcess project, and find the package named
withdrawalServerOp.snippets. Edit three Java files inside: initial.java,
state2.java, and state3.java.

For withdrawalServerOp.snippets.initial, add the import class code in
Example 6-13 on top.

Example 6-13 Added import code for withdrawalServerOp.snippets.initial.java

import com.ibm.btt.base.Context;
import com.ibm.btt.formatter.client.FormatElement;
import com.ibm.btt.server.flow.al.workarea.BPWorkArea;
import com.ibm.btt.services.jdbcjournalservice.JDBCJournal;
import com.ibm.btt.services.jdbcjournalservice.Journal;
import com.ibm.websphere.workarea.UserWorkArea;

In the execute() method, add the code in Example 6-14.

Example 6-14 Code for execute() method of withdrawalServerOp.snippets.initial.java

try{

 if(getContext().getParent()==null)
 //getContext().chainTo(Context.getContextNamed("javaSessionCtx"));

getContext().chainTo(Context.getContextByInstanceID(getSystemData().getInst
anceId()));
 // JDBCJournal journal;
 Journal journal;

166 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

setValueAt("HostBuff",((FormatElement)getFormat("withdrawalSendFmt")).forma
t(getContext()));//$NON-NLS-2$//$NON-NLS-1$

 // writes to the journal using the appropriate format
 journal = (Journal)getService("JournalService");
 journal.addRecord(getContext(),"preSendJournalFmt ");//$NON-NLS-1$
 journal.releaseServiceRequester();
 System.out.println("Withdrawal : executeJournalHostRequestDataStep
ok!");

} catch(Exception e){
 e.printStackTrace();
}

Change "return 0" to" return 1";

For withdrawalServerOp.snippets.state2, add the needed import class code
in Example 6-15 on top:

Example 6-15 Added import class code for withdrawalServerOp.snippets.state2

import java.util.Hashtable;
import javax.resource.cci.*;
import com.ibm.btt.base.*;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0ConnectionSpec;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0InteractionSpec;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0Record;
import com.ibm.btt.services.*;
import com.ibm.btt.services.jdbcjournalservice.Journal;
import com.ibm.btt.formatter.client.FormatElement;

In the execute() method, add the code in Example 6-16:

Example 6-16 Additional code for withdrawalServerOp.snippets.state2 execute() method

try{
 javax.naming.Context initialContext = null;
 ConnectionFactory connectionFactory = null;
 if (initialContext == null) {
 initialContext = new javax.naming.InitialContext();
 connectionFactory = (ConnectionFactory)
initialContext.lookup("snalu0");
 }
 // START TRANSACTION
 long begin = System.currentTimeMillis();

 Chapter 6. Post-migration activities 167

 // For testing Component-managed authentication.
 DummyLu0ConnectionSpec lu0ConnectionSpec = new DummyLu0ConnectionSpec();
 lu0ConnectionSpec.setUserName("sna");
 lu0ConnectionSpec.setPassword("sna");
 Connection connection =
connectionFactory.getConnection(lu0ConnectionSpec);
 System.out.println("connection created...");

 // Beginning of testing SYNC_SEND_RECEIVE
 Interaction interaction = connection.createInteraction();
 System.out.println("interaction created...");
 DummyLu0InteractionSpec interactionSpec = new
DummyLu0InteractionSpec();

 DummyLu0Record in = new DummyLu0Record();
 DummyLu0Record out = new DummyLu0Record();

 in.setData((String) getValueAt("HostBuff"));

interactionSpec.setInteractionVerb(InteractionSpec.SYNC_SEND_RECEIVE);
 interactionSpec.setExecutionTimeout(10000);

 interaction.execute(interactionSpec, in, out);

 System.out.println("data from host: " + out.getData());

 interaction.close();
 System.out.println("interaction closed...");
 connection.close();
 System.out.println("connection closed...");

 com.ibm.btt.formatter.client.FormatElement fromHost =
(com.ibm.btt.formatter.client.FormatElement) getFormat("withdrawalRecFmt");
//$NON-NLS-1$
 fromHost.unformat(out.getData(),getContext());

 }catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to" return 1".

For withdrawalServerOp.snippets.state3, add the import class code in
Example 6-17 on page 168 on top:

Example 6-17 Import class code for withdrawalServerOp.snippets.state3

168 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

import com.ibm.btt.services.jdbcjournalservice.JDBCJournal;
import com.ibm.btt.services.jdbcjournalservice.Journal;

In execute() method add the code in Example 6-18.

Example 6-18 Execute() method code for withdrawalServerOp.snippets.state3

try{
 Journal journal;
 journal = (Journal)getService("JournalService");
 journal.addRecord(getContext(), " afterRecJournalFmt ");//$NON-NLS-1$
 journal.releaseServiceRequester();
 }catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to "return 1";

For the source code, refer to Appendix A, “Branch Transformation Toolkit
development and runtime requirements” on page 477 and Appendix B,
“Setting up a Branch Transformation Toolkit sample application” on page 493.

12.Modify the BPEL file for the withdrawalServerOp business process.

Find the package named withdrawalServerOp, and double-click
withdrawalServerOp.bpel to edit.

a. Select withdrawalServerOp. It’s properties are displayed in the lower
panel. Select Environment, and change the ContextMode to remote, also
add "TrxReplyCode, AccountBalance, TrxErrorMessage" to the MapList.
See Figure 6-39 on page 170.

In the editor, select initial → Implementation. Delete the second line of
the code.

b. In the same way, select state2 → Implementation. Delete the second
line of the code.

c. Save and close the BPEL file.

 Chapter 6. Post-migration activities 169

Figure 6-39 Modify environment properties for withdrawalServerOp.bpel

13.Modify the wsdl file for the withdrawalServerOp business process.

In the same package, open withdrawalServerOpInterface.wsdl with Source
Editor. Add two new lines in the message tag named InputMessage:

<part name="Amount" type="xsd:string" />
<part name="AccountNumber" type="xsd:string" />

Save and close withdrawalServerOpInterface.wsdl.

14.Implement the snippets for the accountStatementServerOp business
process.

Expand the BaseSampleProcess project, and find the package named
accountStatementServerOp.snippets. Edit three Java files inside, initial.java,
state2.java, and state3.java.

170 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

For accountStatementServerOp.snippets.initial, add the need to import class
code on top:

import com.ibm.btt.base.Context;
import com.ibm.btt.formatter.client.FormatElement;
import com.ibm.btt.services.jdbcjournalservice.JDBCJournal;
import com.ibm.btt.services.jdbcjournalservice.Journal;

In execute() method add code:

 try{
 if(getContext().getParent()==null)
//getContext().chainTo(Context.getContextNamed("javaSessionCtx"));

getContext().chainTo(Context.getContextByInstanceID(getSystemData().getInst
anceId()));
 Journal journal;

setValueAt("HostBuff",((FormatElement)getFormat("accountStatementSendFmt"))
.format(getContext()));//$NON-NLS-2$//$NON-NLS-1$

 // writes to the journal using the appropriate format
 journal = (Journal)getService("JournalService");
 journal.addRecord(getContext(),"preSendJournalFmt ");//$NON-NLS-1$
 journal.releaseServiceRequester();
 } catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to" return 1".

For accountStatementServerOp.snippets.state2, add the need to import class
code on top:

import java.util.Hashtable;
import javax.resource.cci.*;
import com.ibm.btt.base.*;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0ConnectionSpec;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0InteractionSpec;
import com.ibm.btt.samples.business.sna.lu0.DummyLu0Record;
import com.ibm.btt.services.*;
import com.ibm.btt.services.jdbcjournalservice.Journal;
import com.ibm.btt.formatter.client.FormatElement;

In execute() method add code:

try{
 javax.naming.Context initialContext = null;
 ConnectionFactory connectionFactory = null;
 if (initialContext == null) {
 initialContext = new javax.naming.InitialContext();
 connectionFactory = (ConnectionFactory)
initialContext.lookup("snalu0");

 Chapter 6. Post-migration activities 171

 }
 // START TRANSACTION
 long begin = System.currentTimeMillis();

 // For testing Component-managed authentication.
 DummyLu0ConnectionSpec lu0ConnectionSpec = new
DummyLu0ConnectionSpec();
 lu0ConnectionSpec.setUserName("sna");
 lu0ConnectionSpec.setPassword("sna");
 Connection connection =
connectionFactory.getConnection(lu0ConnectionSpec);
 System.out.println("connection created...");

 // Beginning of testing SYNC_SEND_RECEIVE
 Interaction interaction = connection.createInteraction();
 System.out.println("interaction created...");
 DummyLu0InteractionSpec interactionSpec = new
DummyLu0InteractionSpec();

 DummyLu0Record in = new DummyLu0Record();
 DummyLu0Record out = new DummyLu0Record();

 in.setData((String) getValueAt("HostBuff"));

 interactionSpec.setInteractionVerb(InteractionSpec.SYNC_SEND_RECEIVE);
 interactionSpec.setExecutionTimeout(10000);

 interaction.execute(interactionSpec, in, out);

 System.out.println("data from host: " + out.getData());

 interaction.close();
 System.out.println("interaction closed...");
 connection.close();
 System.out.println("connection closed...");

 com.ibm.btt.formatter.client.FormatElement fromHost =
(com.ibm.btt.formatter.client.FormatElement)
getFormat("accountStatementRecFmt"); //$NON-NLS-1$
 fromHost.unformat(out.getData(),getContext());
 }catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to" return 1".

172 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

For the accountStatementServerOp.snippets.state3, add the need to import
class code on top:

import com.ibm.btt.services.jdbcjournalservice.JDBCJournal;
import com.ibm.btt.services.jdbcjournalservice.Journal;

In execute() method add code:

try{
 Journal journal;
 journal = (Journal)getService("JournalService");
 journal.addRecord(getContext(), " afterRecJournalFmt ");//$NON-NLS-1$
 journal.releaseServiceRequester();

 }catch(Exception e){
 e.printStackTrace();
 }

Change "return 0" to" return 1".

For the source code, please refer to the Appendix (Appendix A, “Branch
Transformation Toolkit development and runtime requirements” on page 477
and Appendix B, “Setting up a Branch Transformation Toolkit sample
application” on page 493).

15.Modify the BPEL file for accountStatementServerOp business process.

Find the package named accountStatementServerOp, and double-click
accountStatementServerOp.bpel to edit.

Select accountStatementServerOp. It’s properties are displayed in the
lower panel. Select Environment, and change the ContextMode to remote,
and add "TrxReplyCode, accountStatementDetails, TrxErrorMessage" to the
MapList. See Figure 6-40 on page 174.

 Chapter 6. Post-migration activities 173

Figure 6-40 Modify environment properties for accountStatementServerOp.bpel

In the editor, select initial → Implementation. Delete the second line of the
code.

In the same way, select state2 → Implementation. Delete the second line of
the code.

Save and close the BPEL file.

16.Modify the wsdl file for the accountStatementServerOp business process.

In the same package, open accountStatementServerOpInterface.wsdl with
Source Editor. Add a new line in the message tag named InputMessage:

<part name="AccountNumber" type="xsd:string" />

Save and close accountStatementServerOpInterface.wsdl.

17.Deploy the BP codes. For the four BPEL files modified, right-click in the J2EE
perspective and select Enterprise Services → Generate Deploy Code.

174 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Click OK in the pop-up window. All the four BPEL files should be deployed
separately. See Figure 6-41.

Figure 6-41 Generate BPEL deploy code

18.After the deployment, a new project named BaseSampleProcessEAR is
created automatically. Copy the following JAR files from the BaseSample
project into BaseSampleProcessEAR.

– bttbase.jar
– bttevent.jar
– bttfmt.jar
– bttjdbjsvc.jar
– bttjdbtsvc.jar
– bttsvcinfra.jar
– bttsvrbean.jar
– bttsvrflow.jar
– sn0dummy.jar

Since BaseSampleProcessEJB needs these jar files, remove the compile
error needed to copy these jar files.

19.Open the application.xml file in the META-INF folder of the BaseSample
project in the J2EE perspective. In the Module tab, click Add to include
BaseSampleProcessEJB and BaseSampleProcessWeb projects. Save and
close the file. See Figure 6-42 on page 176

 Chapter 6. Post-migration activities 175

Figure 6-42 Add modules to the application

20.Add the services' properties files to BaseSampleProcessEJB project.

Get BTTJavaSample.ear from BTT5.1 installpackaging's path such as
C:\IBM\WebSphere Studio\Branch Transformation Toolkit 5.1\
samples\JavaSampleApplication\StandAlone.

Extract BTTJavaSampleEJB.jar in BTTJavaSample.ear and copy the
following properties files:

– DummyJournal.properties
– LocalJava.properties
– RemoteEJB.properties
– ServiceRequesterIDs.properties
– WSIFEJB.properties
– WSIFSoap.properties
– sampleapplserver.properties

In the J2EE perspective, paste the properties files into the ejbModule folder of
the BaseSampleProcessEJB project.

Configuring Single Action EJBs
1. Right-click the BaseSampleEJB project. In the pop-up menu, select

Properties. Select Java JAR Dependencies, and add the following JARs as
dependencies.

– bttbase.jar
– bttfmt.jar
– bttsvcinfra.jar
– bttsvrbean.jar
– UserDefineJar.jar

176 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Click OK. See Figure 6-43.

Figure 6-43 Add Java JAR dependencies

2. Open the ejb-jar.xml file in the META-INF folder. In the Beans tab, choose
startupServerOp and edit its Environment Variables. Select
sessionCtxName from the variables list and click Edit. Then change its value
to javaSessionCtx. Click Finish, and save and close the file. See Figure 6-44
on page 178.

 Chapter 6. Post-migration activities 177

Figure 6-44 Edit environment variables

3. Expand the com.ibm.dse.samples.appl package to find the
startupServerOpBean.java and startupServerOp.java file. Implement their
execute() methods:

For com.ibm.dse.samples.appl.startupServerOpBean.java, add

 private String sessionID = null;
 private Hashtable result = new Hashtable();
 private Context aContext, parentContext, rootCtx;

See Figure 6-45 on page 179.

178 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-45 Implement execute methods

Modify the execute() method. Change the following:

public Hashtable execute() throws BTTSAEException, Exception {
 Hashtable result = new Hashtable();

 //user code here

 return result;
 }

This should now look as follows:

 public Hashtable execute(BTTSystemData sysData, String wksContext,String
wksParentContext) throws BTTSAEException, Exception {
 Hashtable result = new Hashtable();

 //user code here
 try {
 initialize(sysData);
 setupSessionContext();
 result.put("InstanceID", getInstanceId());

 close();

 } catch (BTTSAEException ex) {
 ex.printStackTrace();
 throw new DSEInvalidRequestException(DSEException.critical,
 getClass().getName(),
 "Not able to create the session context " +
" in " + getName() + " \n" + ex.toString());
 }
 return result;
 }

 Chapter 6. Post-migration activities 179

For startupServerOp.java, modify the execute() method. Change the
following:

public Hashtable execute()
throws BTTSAEException, Exception, java.rmi.RemoteException;

This should look as follows:

public Hashtable execute(BTTSystemData sysData,String wksContext,String
wksParentContext) throws BTTSAEException, Exception,
java.rmi.RemoteException;

See Figure 6-46

Figure 6-46 Execute method for startupServerOp.java

For the source code, refer to the Appendix (Appendix A, “Branch
Transformation Toolkit development and runtime requirements” on page 477
and Appendix B, “Setting up a Branch Transformation Toolkit sample
application” on page 493).

4. In the same way, implement the execute() methods of the
endSessionServerOpBean.java and endSessionServerOp.java file:

For endSessionServerOpBean.java, modify the execute() method. Change
the following:

public Hashtable execute() throws BTTSAEException, Exception {
 Hashtable result = new Hashtable();

 //user code here

 return result;
 }

180 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

This should look as follows:

 public Hashtable execute(BTTSystemData sysData) throws
BTTSAEException,Exception {

 initialize(sysData);

 Hashtable result = new Hashtable();
 Context sessionCtx ;

 //if instanceID != null
 if(getInstanceId() != null){
 // Removes the context and its parent (the parent session context)
 sessionCtx = Context.getContextByInstanceID(getInstanceId());
 if(sessionCtx instanceof Context)
 sessionCtx.prune();
 }

 close();

 return result;
 }

For endSessionServerOp.java, modify the execute() method. Change the
following:

public Hashtable execute()
 throws BTTSAEException, Exception, java.rmi.RemoteException;

This should look as follows:

public Hashtable execute(BTTSystemData sysData)
 throws BTTSAEException, Exception, java.rmi.RemoteException;

For the source code, refer to the Appendix (Appendix A, “Branch
Transformation Toolkit development and runtime requirements” on page 477
and Appendix B, “Setting up a Branch Transformation Toolkit sample
application” on page 493).

5. Save all the changes. If any error exists in the BaseSampleEJB project,
choose the Java Build Path in the Properties window of the project and add
the JARs bttbase.jar, bttfmt.jar, and bttsvrbean.jar to the Libraries tab and
select the bttsvcinfra and UserDefineJar projects in the Projects tab.

6. Make sure that all the errors in the BaseSampleEJB project have been fixed
before deploying. Right-click the project, and from the pop-up menu, select
Generate → Deployment and RMIC Code..., click Select All and Finish.

 Chapter 6. Post-migration activities 181

6.4.2 Presentation layer
In this section we describe how you configure and test the presentation layer of
our sample application.

HTML client
1. Configuring the HTML client.

First, create the servlets needed and then configure them by performing the
following tasks:

a. Expand the BaseSampleWeb project. Right-click the Java Resources
folder and select New → Package to create a new package named
com.ibm.btt.samples.appl.

b. Right-click the com.ibm.btt.samples.appl package and select New →
Class to create a Java class named StartServerServlet.

For the source code, refer to the Appendix (Appendix A, “Branch
Transformation Toolkit development and runtime requirements” on
page 477 and Appendix B, “Setting up a Branch Transformation Toolkit
sample application” on page 493).

c. Copy the bttevent.jar file from the BaseSample project to the
/WebContent/WEB-INF/lib folder of the BaseSampleWeb project.

d. Configure the project to fix the compile errors. Right-click the project and
choose Properties from the pop-up menu to open the Properties window.

e. Select Java JAR Dependencies from the left panel and check
BTTFormatterEJB.jar, BaseSampleEJB.jar, BaseSampleProcess.jar,
BaseSampleProcessEJB.jar, and UserDefineJar.jar from the list. See
Figure 6-47 on page 183.

182 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-47 Java JAR depencies for BaseSampleWeb

f. Select Java Build Path from the left panel and select the Libraries tab.
Click Add Variable and select WAS_EE_V51 from the list. Click Extend
and expand the Libraries folder. Select the following JAR files to add to
the build path. Click OK to close the window.

• acwa.jar
• bpe.jar
• distexcep.jar
• wsif.jar

See Figure 6-48 on page 184.

 Chapter 6. Post-migration activities 183

Figure 6-48 Java build partn for BaseSampleWeb

2. Edit the JSP files.

a. Expand the BaseSampleWeb project. Remove all the four JSP files, that
is, accountStatement.jsp, customerSearch.jsp, error.jsp, and txn.jsp
from the WebContent/jsp folder, and reorganize them in separate folders.

b. Within the WebContent/jsp folder, create new folders and new JSP files:

• Create new folder startUp. Create new JSPs, that is, welcome.jsp and
errorpage.jsp.

For welcome.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>

184 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

<btt:html>

<head>
<title>Welcome</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body text=#ffffff bgColor=#3366ff
background="/BaseSampleWeb/jsp/images/back_interior.gif" >
Demo Bank - Welcome

<HR>
<center>
<btt:form action="/prepareCustomerSearch">
<TABLE cellSpacing=0 cellPadding=0 width="60%" border=0>
 <TBODY>
 <TR>
 <TD align=center><FONT face=Verdana color=#ffffff
size=1><html:submit property="Click to
start"/></TD></TR></TBODY></TABLE>

</center>
</btt:form>

</body>
</btt:html>

For errorpage.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Message Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body BGCOLOR="#EEEEEE">
<h3 align=center>System Message</h3>
<P></P>
<P>You may go back and correct the application. If you have any
question, please call 99-9-999-999-9999 and we will be happy
to help you to take your application.</P>
</body>
</html>

• Create a new folder customerSearchBP. Create new JSPs,
customerSearch.jsp, customerSearchList.jsp, and errorpage.jsp.

For customerSearch.jsp:

 Chapter 6. Post-migration activities 185

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<btt:html>

<head>
<title>Customer log on</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body bgcolor="#3366FF" text="#FFFFFF"
background="/BaseSampleWeb/jsp/images/back_interior.gif" >

<btt:errors/>
<btt:form action="/customerSearchBP">

<center>
<table align="center" border="1" cellspacing="1" cellpadding="0"
width=60%>
 <TR>
 <TD height="40" bgcolor="#002184" width="40%"
align="center"><FONT face="Verdana" size="2"
color="#FFFFFF">Customer ID: </TD>
 <TD bgcolor="#0A35B8" align="center"><FONT face="Verdana"
size="2" color="#FFFFFF"><input type=text name="customerId"
value=""></td><td></TD>
 </TR>
</table>

<table align="center" border="0" cellspacing="0" cellpadding="0"
width=60%>
<TR>
<TD align="center">

<input type=submit value="Search">

</TD>
</TR>
</table>
</center>
</btt:form>

</body>
</btt:html>

186 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

For customerSearchList.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<btt:html>
<HEAD>
<title>Demo Bank - Transactions Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</HEAD>
<body bgcolor="#3366FF" text="#FFFFFF"
background="/BaseSampleWeb/jsp/images/back_interior.gif">
Demo Bank - Transactions
Page
<script language="JavaScript">
function submitAction(actionName){
customerSearchForm.action=actionName;
customerSearchForm.submit();

}
</script>

<p>
<btt:form action="/customerSearchBP">
<center>
<table border="1" cellspacing="1" cellpadding="1" width=60%>
 <TR>
 <TD height="40" bgcolor="#002184" align="center"
colspan="4"><FONT face="Verdana" size="2"
color="#FFFFFF">Customer Name:
 <btt:label dataName="CustomerName"/>
</TD>
 </TR>
 <TR>
 <TD height="35" bgcolor="#002184" width="35%" align="left"><FONT
face="Verdana" size="2" color="#FFFFFF">Account
Number</TD>
 <TD bgcolor="#0A35B8" align="right"><FONT face="Verdana" size="2"
color="#FFFFFF">
 <btt:combo dataName="AccountNumber" dataNameForList="accounts"
value="AccountNumber" item="Name"/>
 </TD>
 </TR>
 <TR>
 <TD height="35" bgcolor="#002184" width="35%" align="left"><FONT
face="Verdana" size="2"
color="#FFFFFF">Amount</TD>

 Chapter 6. Post-migration activities 187

 <TD bgcolor="#0A35B8" align="right"><FONT face="Verdana" size="2"
color="#FFFFFF">
 <btt:text property="Amount"/></TD>
 </TR>

</table>
<table align="center" border="0" cellspacing="0" cellpadding="0"
width=60%>
<TR align="center" valign="baseline">
<TD align="center"><input type=button align="middle" value="Deposit"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/depositBP/deposi
tBP.do');"></TD>
<TD align="center"><input type=button align="middle"
value="Withdrawal"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/withdrawalBP/wit
hdrawalBP.do');"></TD>
<TD align="center"><input type=button align="middle" value="Account
Statement"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/accountStatement
BP/accountStatementBP.do');"></TD>
<TD align="center"><input type=button align="middle" value="Cancel"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/endSession/endSe
ssion.do');" ></TD>
</TR>
</table>
</center>
</btt:form>

</body>
</btt:html>

For errorpage.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Message Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body BGCOLOR="#EEEEEE">
<h3 align=center>System Message</h3>
<P></P>
<P>You may go back and correct the application. If you have any
question, please call 99-9-999-999-9999 and we will be happy
to help you to take your application.</P>
</body>
</html>

188 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

• Create a new folder, depositBP. In the new folder, create new JSPs
depositList.jsp, errorpage.jsp.

For depositList.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<btt:html>
<HEAD>
<title>Demo Bank - Transactions Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</HEAD>
<body bgcolor="#3366FF" text="#FFFFFF"
background="/BaseSampleWeb/jsp/images/back_interior.gif">
Demo Bank - Transactions
Page
<script language="JavaScript">
function submitAction(actionName){
depositForm.action=actionName;
depositForm.submit();

}

</script>

<p>
<btt:form action="/depositBP">
<center>
<table border="1" cellspacing="1" cellpadding="1" width=60%>
 <TR>
 <TD height="40" bgcolor="#002184" align="center"
colspan="4"><FONT face="Verdana" size="2"
color="#FFFFFF">Customer Name:
 <btt:label dataName="CustomerName"/>
</TD>
 </TR>
 <TR>
 <TD height="35" bgcolor="#002184" width="35%" align="left"><FONT
face="Verdana" size="2" color="#FFFFFF">Account
Number</TD>
 <TD bgcolor="#0A35B8" align="right"><FONT face="Verdana" size="2"
color="#FFFFFF">
 <btt:combo dataName="AccountNumber" dataNameForList="accounts"
value="AccountNumber" item="Name"/>
 </TD>
 </TR>
 <TR>

 Chapter 6. Post-migration activities 189

 <TD height="35" bgcolor="#002184" width="35%" align="left"><FONT
face="Verdana" size="2"
color="#FFFFFF">Amount</TD>
 <TD bgcolor="#0A35B8" align="right"><FONT face="Verdana" size="2"
color="#FFFFFF">
 <btt:text property="Amount"/></TD>
 </TR>

</table>
<table align="center" border="0" cellspacing="0" cellpadding="0"
width=60%>
<TR align="center" valign="baseline">
<TD align="center"><input type=button align="middle" value="Deposit"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/depositBP/deposi
tBP.do');"></TD>
<TD align="center"><input type=button align="middle"
value="Withdrawal"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/withdrawalBP/wit
hdrawalBP.do');"></TD>
<TD align="center"><input type=button align="middle" value="Account
Statement"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/accountStatement
BP/accountStatementBP.do');"></TD>
<TD align="center"><input type=button align="middle" value="Cancel"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/endSession/endSe
ssion.do');" ></TD>
</TR>
</table>
</center>
</btt:form>

<table>
<TR> <TD align=left><FONT face="Verdana" size="2"
color="#FFFFFF">Balance: </TD>
<TD align=left><FONT face="Verdana" size="2"
color="#FFFFFF"><btt:label
dataName="AccountBalance"/></TD></TR>
<TR> <TD align=left><FONT face="Verdana" size="2"
color="#FFFFFF">Message: </TD>
<TD align=left>
Transaction Successful </TD></TR>
</table>

</body>
</btt:html>

For errorpage.jsp:

190 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Message Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body BGCOLOR="#EEEEEE">
<h3 align=center>System Message</h3>
<P></P>
<P>You may go back and correct the application. If you have any
question, please call 99-9-999-999-9999 and we will be happy
to help you to take your application.</P>
</body>
</html>

• Create a new folder, withdrawalBP. In the new folder, create JSPs
withdrawalList.jsp and errorpage.jsp.

For withdrawalList.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<btt:html>
<HEAD>
<title>Demo Bank - Transactions Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</HEAD>
<body bgcolor="#3366FF" text="#FFFFFF"
background="/BaseSampleWeb/jsp/images/back_interior.gif">
Demo Bank - Transactions
Page
<script language="JavaScript">
function submitAction(actionName){
withdrawalBPForm.action=actionName;
withdrawalBPForm.submit();

}

</script>

<p>
<btt:form action="/withdrawalBP">
<center>
<table border="1" cellspacing="1" cellpadding="1" width=60%>
 <TR>
 <TD height="40" bgcolor="#002184" align="center"
colspan="4"><FONT face="Verdana" size="2"

 Chapter 6. Post-migration activities 191

color="#FFFFFF">Customer Name:
 <btt:label dataName="CustomerName"/>
</TD>
 </TR>
 <TR>
 <TD height="35" bgcolor="#002184" width="35%" align="left"><FONT
face="Verdana" size="2" color="#FFFFFF">Account
Number</TD>
 <TD bgcolor="#0A35B8" align="right"><FONT face="Verdana" size="2"
color="#FFFFFF">
 <btt:combo dataName="AccountNumber" dataNameForList="accounts"
value="AccountNumber" item="Name"/>
 </TD>
 </TR>
 <TR>
 <TD height="35" bgcolor="#002184" width="35%" align="left"><FONT
face="Verdana" size="2"
color="#FFFFFF">Amount</TD>
 <TD bgcolor="#0A35B8" align="right"><FONT face="Verdana" size="2"
color="#FFFFFF">
 <btt:text property="Amount"/></TD>
 </TR>

</table>
<table align="center" border="0" cellspacing="0" cellpadding="0"
width=60%>
<TR align="center" valign="baseline">
<TD align="center"><input type=button align="middle" value="Deposit"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/depositBP/deposi
tBP.do');"></TD>
<TD align="center"><input type=button align="middle"
value="Withdrawal"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/withdrawalBP/wit
hdrawalBP.do');"></TD>
<TD align="center"><input type=button align="middle" value="Account
Statement"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/accountStatement
BP/accountStatementBP.do');"></TD>
<TD align="center"><input type=button align="middle" value="Cancel"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/endSession/endSe
ssion.do');" ></TD>
</TR>
</table>
</center>
</btt:form>

<table>

192 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

<TR> <TD align=left><FONT face="Verdana" size="2"
color="#FFFFFF">Balance: </TD>
<TD align=left><FONT face="Verdana" size="2"
color="#FFFFFF"><btt:label
dataName="AccountBalance"/></TD></TR>
<TR> <TD align=left><FONT face="Verdana" size="2"
color="#FFFFFF">Message: </TD>
<TD align=left>
Transaction Successful </TD></TR>
</table>

</body>
</btt:html>

For errorpage.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Message Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body BGCOLOR="#EEEEEE">
<h3 align=center>System Message</h3>
<P></P>
<P>You may go back and correct the application. If you have any
question, please call 99-9-999-999-9999 and we will be happy
to help you to take your application.</P>
</body>
</html>

• Create a new folder, accountStatementBP. In the new folder, create
JSPs accountStatementList.jsp and errorpage.jsp.

For accountStatementList.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<btt:html>
<HEAD>
<title>Demo Bank: accountStatement</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</HEAD>
<body bgcolor="#3366FF" text="#FFFFFF"
background="/BaseSampleWeb/jsp/images/back_interior.gif" >
Demo Bank - Account
Statement
<script language="JavaScript">

 Chapter 6. Post-migration activities 193

function submitAction(actionName){
accountstatementForm.action=actionName;
accountstatementForm.submit();

}
</script>
<btt:form action="/accountStatementBP">

<center>
<input type=hidden name=CustomerId value="123" SIZE=15>
<btt:table dataNameForList="accountStatementDetails"
headers="{OpnDate,OpnDescription,OpnAmount,OpnBalance}" border="1"
cellspacing="1" cellpadding="0" width="70%" headerBGColor="#002184"
colAlignments="left,center,center,center" showHeaders="yes"
headerAlignment="center"/>

<input type=button value="Previous"
onClick="javascript:submitAction('/BaseSampleWeb/jsp/customerSearchBP
/customerSearchBP.do');">
</center>
</btt:form>
</body>
</btt:html>

For errorpage.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Message Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body BGCOLOR="#EEEEEE">
<h3 align=center>System Message</h3>
<P></P>
<P>You may go back and correct the application. If you have any
question, please call 99-9-999-999-9999 and we will be happy
to help you to take your application.</P>
</body>
</html>

• Create a new folder, endSession. In the new folder, create JSPs
logoffPage.jsp and errorpage.jsp.

For logoffPage.jsp:

194 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@page import = "java.util.ResourceBundle"%>
<html>
<HEAD>
<META name="GENERATOR" content="IBM WebSphere Studio">
</HEAD>
<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<body BGCOLOR="#EEEEEE">

<p>
<p>
logoff success!
</body>
</html>

For errorpage.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Message Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body BGCOLOR="#EEEEEE">
<h3 align=center>System Message</h3>
<P></P>
<P>You may go back and correct the application. If you have any
question, please call 99-9-999-999-9999 and we will be happy
to help you to take your application.</P>
</body>
</html>

• In the jsp folder, create doubleClickError.jsp and errorpage.jsp.

For doubleClickError.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<head>
<title>Demo Bank - Out of order</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body BGCOLOR="#EEEEEE">

<h3 align=center><btt:label text="Double click Error"/></h3>

<P>We apologize ,you double click or reload.</P>

 Chapter 6. Post-migration activities 195

<table>
<tr>
<td align="center">

</td>

</tr>
</table>

<center>
<table border=0 cellpadding=0 cellspacing=0>
<tr>
<td align=center>

</td>
</tr>
</table>
</center>
</body>
</html>

For errorpage.jsp:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Message Page</title>
<META name="GENERATOR" content="IBM WebSphere Studio">
</head>
<body BGCOLOR="#EEEEEE">
<h3 align=center>System Message</h3>
<P></P>
<P>You may go back and correct the application. If you have any
question, please call 99-9-999-999-9999 and we will be happy
to help you to take your application.</P>
</body>
</html>

The image file back_interior.gif can be found in the
DSE_SampleApplicationWeb project in the Branch Transformation
Toolkit 4.3 workspace, WebContent/dse/html folder.

The overall file structure should look as shown in Figure 6-49 on
page 197.

196 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-49 File structure for BaseSampleWeb

3. Create the ActionForms and Validators.

Create a package named com.ibm.btt.samples.html in the Java Resources
folder of the BaseSampleWeb project.

In the com.ibm.btt.samples.html package, create the following classes:

– StartUpForm.java
– CustomerSearchForm.java
– CustomerSearchXVal.java
– DepositBPForm.java
– DepositXVal.java
– WithdrawalBPForm.java
– WithdrawalXVal.java
– AccountStatementForm.java
– EndSessionForm.java

Their contents can be found in the Appendix (Appendix A, “Branch
Transformation Toolkit development and runtime requirements” on page 477
and B.1, “Setting up the Java sample application” on page 494).

 Chapter 6. Post-migration activities 197

4. Create Struts Actions.

Create a package named com.ibm.btt.struts.actions in the Java
Resources folder of the BaseSampleWeb project.

In the com.ibm.btt.struts.actions package, create the following classes:

– CustomerSearchAction.java
– EJBLogOffAction.java

Their contents can be found in the Appendix (Appendix A, “Branch
Transformation Toolkit development and runtime requirements” on page 477
and B.1, “Setting up the Java sample application” on page 494).

5. Modify the invoker.

Modify the invoker classes according to Table 6-3, in the Java Resources
folder of the BaseSampleWeb project. Their contents can be found in the
Appendix (Appendix A, “Branch Transformation Toolkit development and
runtime requirements” on page 477 and B.1, “Setting up the Java sample
application” on page 494).

Table 6-3 BaseSampleWen invoker classes

6. Modify the project configuration file.

Expand the BaseSampleWeb project. Locate the web.xml file in the
WebContent/WEB-INF folder. Open it in the XML Editor and add the following
definitions. Add initial parameters at the end of the servlet definition with the
name Action before the line: <load-on-startup>2</load-on-startup>.

<init-param>
 <param-name>config/jsp/startUp</param-name>
 <param-value>/WEB-INF/struts-config_startUp.xml</param-value>
</init-param>
<init-param>

Package File

com.ibm.dse.samples.appl.invoker.html startupHtmlServerOpInvoker.java
endSessionServerOpInvoker.java

com.ibm.dse.samples.appl.invoker.java startupServerOpInvoker.java
endSessionServerOpInvoker.java

customerSearchServerOp.invoker.java customerSearchServerOpInvoker.java

depositServerOp.invoker.java depositServerOpInvoker.java

withdrawalServerOp.invoker.java withdrawalServerOpInvoker.java

accountStatementServerOp.invoker.java accountStatementServerOpInvoker.java

com.ibm.btt.cs.invoker.base BeanInvokerRegistryMapper.properties

198 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

 <param-name>config/jsp/customerSearchBP</param-name>
 <param-value>/WEB-INF/struts-config_customerSearchForBP.xml</param-value>
</init-param>
<init-param>
 <param-name>config/jsp/withdrawalBP</param-name>
 <param-value>/WEB-INF/struts-config_withdrawalForBP.xml</param-value>
</init-param>
<init-param>
 <param-name>config/jsp/depositBP</param-name>
 <param-value>/WEB-INF/struts-config_depositForBP.xml</param-value>
</init-param>
<init-param>
 <param-name>config/jsp/accountStatementBP</param-name>

<param-value>/WEB-INF/struts-config_accountstatementForBP.xml</param-value>
</init-param>
<init-param>
 <param-name>config/jsp/endSession</param-name>
 <param-value>/WEB-INF/struts-config_endSession.xml</param-value>
</init-param>

Add a new servlet definition with the name StartServerServlet after the first
servlet definition.

<servlet>
 <servlet-name>StartServerServlet</servlet-name>
 <display-name>StartServerServlet</display-name>

<servlet-class>com.ibm.btt.samples.appl.StartServerServlet</servlet-class>
 <load-on-startup>-1</load-on-startup>
</servlet>

Add a new environment entry named dseIniPath at the end of the tag-lib list.

<env-entry>
 <env-entry-name>dseIniPath</env-entry-name>
 <env-entry-value>c:\\dse\\dse.ini</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>

The resulting web.xml file can be found in the Appendix (Appendix A, “Branch
Transformation Toolkit development and runtime requirements” on page 477
and Appendix B, “Setting up a Branch Transformation Toolkit sample
application” on page 493).

7. Create WSDL definitions.

Create a folder named wsdlin the WebContent folder of the BaseSampleWeb
project. See Figure 6-50 on page 200

 Chapter 6. Post-migration activities 199

Figure 6-50 WSDL folder for BaseSampleWeb

Copy the definition files from the BaseSampleProcess project to this folder
according to Table 6-4.

Table 6-4 Definition files needed for BaseSampleWeb

Source folder File name

customerSearchServerOp BTTSystemData.xsd
cha.wsdl
customerSearchServerOp.wsdl
customerSearchServerOp_ProcessPortT
ype_EJB.wsdl
customerSearchServerOpInterface.wsdl

DepositServerOp depositServerOp.wsdl
depositServerOp_ProcessPortType_EJB.
wsdl
depositServerOpInterface.wsdl

withdrawalServerOp withdrawalServerOp.wsdl
withdrawalServerOp_ProcessPortType_E
JB.wsdl
withdrawalServerOpInterface.wsdl

200 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The resulting file structure in this folder should look as shown in Figure 6-51.

Figure 6-51 Completed WSDL folder for BaseSampleWeb

8. Create the Struts definition files.

In the WebContent/WEB-INF folder of the BaseSampleWeb project, create
the following definition files.

– struts-config_startUp.xml
– struts-config_customerSearchForBP.xml
– struts-config_depositForBP.xml
– struts-config_withdrawalForBP.xml
– struts-config_endSession.xml
– struts-config_accountStatementForBP.xml

Their contents can be found in the Appendix (Appendix A, “Branch
Transformation Toolkit development and runtime requirements” on page 477

accountStatementServerOp accountStatementServerOp.wsdl
accountStatementServerOp_ProcessPort
Type_EJB.wsdl
accountStatementServerOpInterface.wsd
l

Source folder File name

 Chapter 6. Post-migration activities 201

and Appendix B, “Setting up a Branch Transformation Toolkit sample
application” on page 493).

The resulting file structure in the WEB-INF folder should look as shown in
Figure 6-52.

Figure 6-52 WEB_INF folder for BaseSampleWeb

Java client
1. To configure the build path of the DSE_SampleApplicationClient project,

right-click the project and open its Properties window. Select Java Build
Path from the left panel.

In the Libraries tab, click Add JARs. Expand the BaseSample project and
select the following JAR files:

– dseb.jar
– dsecsm.jar
– dsecss.jar
– dsed.jar
– dseflp.jar
– dseflpeclt.jar
– dsegb.jar
– dsejxpsvc.jar
– dsesci.jar

202 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

– dsesym.jar
– dsetde.jar

In the Libraries tab, click Add Variable. Choose WAS_V5_XERCES from the
list and click OK. See Figure 6-53

Figure 6-53 Java build path for client application

2. Modify the OpenDesktop.java class in the com.ibm.dse.samples.appl
package of the DSE_SampleApplicationClient project. Change the initial
value of the variable iniPath to
http://127.0.0.1:9080/BaseSampleWeb/dse/dse.ini.

See Figure 6-54 on page 204

 Chapter 6. Post-migration activities 203

Figure 6-54 Set configuration file path

3. Configure the UserDefineJar project. Right-click the UserDefineJar project to
bring its Properties window.

Select Java Build Path from the left panel. In the Libraries tab, click Add
JARs.In the pop-up window, expand the BaseSample project to choose the
bttbase.jar file. Click OK to add. See Figure 6-55 on page 205.

204 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 6-55 Add JARs to build path for client application

Modify the HostField.java class in the com.ibm.dse.samples.appl package.
Change the following line:

import com.ibm.dse.base.*;

The line should appear as:

import com.ibm.btt.base.*;

Add two methods in this class:

public void writeExternal(java.io.ObjectOutput s) throws
java.io.IOException {
 super.writeExternal(s);

 s.writeUTF(hostIdentifier);

}

 Chapter 6. Post-migration activities 205

/**
 * Invokes the object creation from an ObjectInput.
 * @param s java.io.ObjectInput
 * @exception java.io.IOException.
 * @exception java.lang.ClassNotFoundException.
 */
public void readExternal(java.io.ObjectInput s) throws java.io.IOException,
java.lang.ClassNotFoundException {

 super.readExternal(s);

 //hostIdentifier
 hostIdentifier = s.readUTF();
}

Modify the HostDecorator.java class in the com.ibm.dse.samples.appl
package. Change the following line:

import com.ibm.dse.base.*;

It should appear as follows:

import com.ibm.btt.base.*;

Modify the HostStringFormat.java class in the com.ibm.dse.samples.appl
package. Change the following line:

import com.ibm.dse.base.*;

It should appear as follows:

import com.ibm.btt.base.*;

Change the definition of the method formatField() in this class:

public String formatField(DataField aDataField) throws
com.ibm.btt.base.DSEInvalidClassException { ... }

Surround the statement aDataField.setValue(tmpString); with try/catch
block as follows:

 try {
 aDataField.setValue(tmpString);
 } catch (Exception e) {
 e.printStackTrace();
 }

4. Add the Base Sample Application to the test environment.

Since you use the WSAD test environment to deploy the BaseSample server,
add the Base Sample Application.

Change to the Server perspective. Right-click the BaseSample server in the
Server Configuration panel. Select Add and remove projects in the pop-up
menu. In the next window, select Base Sample project from the list in the left

206 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

panel, and click Add to configure it on the server. Click Finish. See
Figure 6-56

Figure 6-56 Add project to test server

 Chapter 6. Post-migration activities 207

208 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Chapter 7. Testing and deployment

This chapter discusses testing the migrated Base Sample application. In our
sample, we used two types of clients to access the services and operations
provided by the server, one a pure Java client and the other an HTML client.
After testing, you should deploy the newly created application. Branch
Transformation Toolkit 5.1 supports two kinds of platforms; WebSphere
Application Server and)WebSphere Business Integration Server Foundation.
Depending on what features your application uses you need to decide what
platform to which to deploy.

Base on the features of our sam,ple application, we deploy it on WebSphere
Business Integration Server Foundation.

This chapter discusses the following topics:

� 7.1, “Configuring the test environment” on page 210
� 7.2, “Java client” on page 211
� 7.3, “HTML client” on page 213
� 7.4, “Application deployment” on page 214

7

© Copyright IBM Corp. 2006. All rights reserved. 209

7.1 Configuring the test environment
Although the migration work is nearly compete, before using the migrated
project, the application should be tested, deployed, and run. In this phase, the
server is created and some configuration carried out.

CHA provides context functionality in a distributed server environment. To fulfil
the functionality of the CHA in Branch Transformation Toolkit 5.1 applications, a
database server is also required. Although most kinds of database systems are
supported as described in Chapter 5, “Migrating an application”, IBM DB2
Universal Database 8.2 is used as the default in this book.

In our sample, the WebSphere Studio Application Developer Integration Edition
v5.1.1 test environment was used as the runtime platform and DB2 Universal 8.2
was used as the database server.

7.1.1 Preparing the CHA database
During the migration process, you created a database named SAMPLE. Check
the database status before proceeding. If you created the database correctly,
skip this phase. Otherwise, you have to create it again or fix it. For detailed
information, refer to 5.3.2, “Creating a CHA database” on page 116.

7.1.2 Creating a server
In 6.3, “Preparing the client and the server” on page 132, you created the server
named BaseSample. Check the server status before proceeding. For this
configuration, the security and database information is required. If you have done
this correctly, skip this step. Otherwise, reorganize the server again. For
information about the detailed method to do this, refer to 6.3.3, “Creating a
server” on page 143.

Once you finish this, deploy CHA to fulfil the EJB to RDB Mapping functionality. If
you have already done this correctly following the instruction given in “CHA
deployment” on page 151, you can skip this step. Otherwise, you have do it again
to fix any errors.

7.1.3 Adding application to the test environment
Because you will be publishing the BaseSample application by deploying the
BaseSample server, add the application to the server, by performing the
following steps:

1. Change to Server perspective.

210 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. Right-click the BaseSample server in the Server Configuration panel.

3. Select Add and remove projects in the pop-up menu.

4. In the next window, select the Base Sample project from the list in the left
panel, and click Add to configure it on the server.

5. Click Finish.

After doing this, you must check to see if errors exist. You must correct any
errors so that the server can launch successfully.

7.1.4 Launching the migrated application
Wjem everything we have described so far is completed, launch the server for
clients to use it.

In the Server perspective, select the server name BaseSample in the Servers
panel. Click the running-man icon to start the server, as shown in Figure 7-1.

The response messages can be found in the console. Use the information to
check the server’s status.

Figure 7-1 Launch the test server

7.2 Java client
The migrated project supports pure Java access. By creating a Java client
application, you can access the applications services and operations and test
whether the migrated application works.

Since you have created the client application during the migration process, you
only need to locate and start the client by performing the following tasks:

1. From the main menu select Run → Run.... In the next window, select Java
Application from the list in the left panel and click New.

 Chapter 7. Testing and deployment 211

2. Locate the client program.

In the right panel, click Browse to select DSE_SampleApplicationClient as
the project, and click Search to choose
com.ibm.dse.samples.appl.OpenDesktop as the main class, as shown in
Figure 7-2.

Figure 7-2 Run Java application

3. Start the client program by clicking Apply and Run to bring up the client.
Figure 7-2 shows how to start the client.

212 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

4. Click Customer search and input a value for Customer ID to start testing. If
BaseSample works, you will get the correct response. Figure 7-3 shows the
welcome screen of the application.

Figure 7-3 Application welcome window

7.3 HTML client
The migrated project also supports Web-based access, so that users can access
the application services and operations of server through Web browser.

For this sample, you can use Internet Explorer to test BaseSample after
deploying and starting the server.

1. Make sure that you have started the BaseSample properly. If not, do so as
described in 7.1, “Configuring the test environment” on page 210.

2. Open an Internet Explorer window and navigate to the following URL:

http://127.0.0.1:9080/BaseSampleWeb/jsp/startUp/startUp.do

3. The main page is displayed.Click Submit. Input the value user01 for both
Customer Name and Password to try other transactions.

 Chapter 7. Testing and deployment 213

4. Depending the operation you are testing, you will get a response indicating
that the BaseSample server works.

7.4 Application deployment
In order to be able to use the migrated project, deploy it and run it on a real
application server platform.

For it’s Web application server, Branch Transformation Toolkit 5.1 supports both
the WebSphere Application Server and WebSphere Business Integration Server
Foundation platforms. You can select your deployment platform according to the
requirements of your application. Figure 7-4 on page 214 shows the features and
benefits provided by the different servers.

Figure 7-4 Branch Transformation Toolkit runtime environments

Some features such as the Struts BTT Extensions and BPEL, are not supported
by the WebSphere Application Server. If the application includes these features,
you should use WebSphere Business Integration Server Foundation for your
deployment runtime.

Branch Transformation
Toolkit

WebSphere Application
Server

IBM JRE

Branch Transformation
Toolkit

IBM JRE

WebSphere Business
Integration Server

Foundation

Features & Benefits
• Extended J2EE supported
• Adds Process Choreographer
• Adds Startup EJB
• Adds ActivitySession support

across multiple servers
• Adds Clustering, Fail-over, and

Workload Manager (WLM)
support

• Suitable for medium to large
enterprises

Features & Benefits
• Full J2EE support
• Struts HTML available

WebSphere Application
Server

214 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

You can deploy our sample application on any of the server platforms supported
by the Branch Transformation Toolkit. The following procedure describes how to
install and run the BaseSample application on the WebSphere Application
Server.

Setting up an application on WebSphere Application Server
To set up an application on WebSphere Application Server, follow these steps;

1. Copy external files.

If you are using the Windows platform, create a directory called c:\dse on the
server system. Copy all the dse files into this directory, including the
configuration files and data files.

If your operating system is UNIX or Linux, do the following:

a. Open BaseSampleWeb, modify Web Deployment Descriptor, set the
dseIniPath value to /dse/dse.ini.

b. Open BTTCHAEJB, modify ejb-jar.xml, and set the dseIniPath value to
/dse/dse.ini.

2. Create database and tables.

a. Run the following in the DB2 command window to create a database
named sample:

DB2 CREATE DATABASE SAMPLE

You can set the user and password for the database SAMPLE, for
example, set both user and password as db2admin.

b. Create three tables.

i. Create a directory called /temps.

ii. Copy %install root%\dbtools\Windows\DB2\tableDefinition\cha\
createCHATables.ddl to directory \temps.

iii. Go to the /temps directory and open the DB2 command window.

iv. In the DB2 command window, run:

DB2 CONNECT TO SAMPLE USER db2admin USING db2admin

v. In the DB2 Command Window, run:

db2 -tvf createCHATables.ddl

Note: If your operating system is UNIX or Linux, copy %install root%/
dbtools/Unix/DB2/tableDefinition/cha/createCHATables.ddl to the
directory /temps.

 Chapter 7. Testing and deployment 215

You will see messages indicating that CHAChildren, CHAInstance, and
CHAControl tables have been created successfully.

3. Open a Web browser and input the following URL to open the Administrative
console:

http://serverName:9090/admin

4. Import BaseSample.ear into WebSphere Application Server.

a. In the navigation bar, select Applications → Install new Application.

b. In the main frame, click Browse and locate the BaseSample.ear file. Click
Next.

c. In the Step2 frame, specify the DataBase Type.

d. In the Deploy EJBs Option - Database Type field, use the default value.
For DB2, select DB2UDB_V81.

e. In the Step4 frame, input jdbc/CHADataSource as JNDI Name. Use default
value for other settings

f. In the setp10 frame, click Finish.

g. Click Save to complete the Master Configuration.

h. Click Save to finish importing BaseSample.ear.

5. Set up JDBC Providers.

a. In the navigation bar, select Resource → JDBC Providers.

b. In the main frame, click New.

c. In the JDBC Providers field, select the (XA) JDBC Provider. For other
settings, use the default value.

d. Click OK to return to the JDBC Providers page.

e. Click the JDBC Provider Name.

f. In Additional Properties section, click Data Source.

g. Click New.

h. Input the value jdbc/CHADataSource in the JNDI Name field and select the
option Use this Data Source in container managed persistence (CMP).
Click OK to return to the Data Sources page.

i. Click the Data Source Name.

j. In the Related Items section, click J2C Authentication Data Entries.

k. Click New to include the following settings:

• Alias: CHA
• User ID: db2admin
• Password: db2admin

216 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

l. Click OK to save the values.

m. In the navigation bar, select Resource → JDBC Providers → JDBC
Provider Name → Data Source.

n. Click the Data Source Name.

o. Select a value for the Component-managed Authentication Alias and
Container-managed Authentication Alias fields. Click OK to return to the
Data Sources page.

p. Click Data Source Name.

q. In the Additional Properties section, click Custom Properties.Set the
databaseName and serverName. Use the default value for other settings,
click Save on top of the page.

r. In the navigation bar, select Resource → JDBC Providers → JDBC
Provider Name → Data Source. Select the Data Source and click Test
Connection. You will see some messages indicating that Test Connection
was successful.

6. Start the Applications.

a. In the navigation bar, select Applications → Enterprise Applications.

b. Select BaseSampleEAR and click Start.

c. Open a Web browser, and input the following URL to run the BaseSample:

http://serverName:9080/BaseSampleWeb/btt/html/sign/prepareSignIn.do

Install on WebSphere Business Integration Server Foundation
If you did a typical installation of WebSphere Business Integration Server
Foundation and do not have a sample container, you must configure your
business process container manually.

Note: To check whether you have a business process container configured on
your server, from the administrative console navigation pane, select
Applications → Enterprise Applications. Your process container is
available if an application named
BPEContainer_<hostName>_<serverName> appears in the list of enterprise
applications.

 Chapter 7. Testing and deployment 217

If you carried out a custom installation and choose to configure a sample
business process container in the Installation Wizard, performing the following
tasks:

1. In your operating system, create a directory called /dse. If the OS is
Windows, the directory should be c:\dse\. Copy all the necessary files to this
directory.

If your OS is UNIX or Linux(R), do the following:

a. Open the BaseSampleWeb project, modify Web Deployment
Descriptor, set the dseIniPath value to /dse/dse.ini from
BaseSampleWeb.

b. Open the BTTCHAEJB project, modify ejb-jar.xml, set the dseIniPath
value to /dse/dse.ini from BTTCHAEJB.

2. Create database and tables.

a. Run the following in the DB2 command window to create a database
named sample:

DB2 CREATE DATABASE SAMPLE

You can set user and password for the database sample, for example, set
both user and password as db2admin.

b. Create three tables.

i. Create a directory called /temps.

ii. Copy %install root%\dbtools\Windows\DB2\tableDefinition\cha\
createCHATables.ddl to the \temps directory.

iii. Shift to the /temps directory and open the DB2 command window.

iv. In the DB2 command window, run:

DB2 CONNECT TO SAMPLE USER db2admin USING db2admin

v. In the DB2 Command Window, run:

db2 -tvf createCHATables.ddl

You will see messages indicating that CHAChildren, CHAInstance, and
CHAControl tables have been created successfully.

Note: If your operating system is UNIX or Linux, copy %install
root%/
dbtools/Unix/DB2/tableDefinition/cha/createCHATables.ddl to
the directory /temps.

218 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3. Open a Web browser, input the following URL to open the Administrative
console:

http://serverName:9090/admin

4. Import BaseSample.ear into WebSphere Business Integration Server
Foundation.

a. In the navigation bar, select Applications → Install new Application.

b. In the main frame, click Browse and locate the BaseSample.ear file. Click
Next.

c. In the Step2 frame, specify the DataBase Type.

In the Deploy EJBs Option - Database Type field, use the default value.
For DB2, select DB2UDB_V81.

d. In the Step4 frame, input jdbc/CHADataSource for JNDI Name. Use
default value for other settings.

e. In the setp10 frame, click Finish.

f. Click Save to Master Configuration.

g. Click Save to finish importing BaseSample.ear.

5. Set up JDBC Providers.

a. In the navigation bar, select Resource → JDBC Providers.

b. In the main frame, click New.

c. In JDBC Providers field, select JDBC Provider. It must be the (XA) JDBC
Provider. For other settings, use the default value.

d. Click OK to return to the JDBC Providers page.

e. Click the JDBC Provider Name.

f. In Additional Properties section, click Data Source.

g. Click New.

h. Input jdbc/CHADataSource in the JNDI Name field and select the option
Use this Data Source in container managed persistence (CMP). Click
OK to return to the Data Sources page.

i. Click the Data Source Name.

j. In the Related Items section, click J2C Authentication Data Entries.

k. Click New and enter the following:

• Alias: CHA
• User ID: db2admin
• Password: db2admin

l. Click OK to save the values.

 Chapter 7. Testing and deployment 219

m. In the navigation bar, select Resource → JDBC Providers → JDBC
Provider Name → Data Source.

n. Click Data Source Name.

o. Select values for Component-managed Authentication Alias and
Container-managed Authentication Alias fields. Click OK to return to the
Data Sources page.

p. Click the Data Source Name.

q. In the Additional Properties section, click Custom Properties. Set the
databaseName and serverName. Use the default value for other settings,
and click save on top of the page.

r. In the navigation bar, select Resource → JDBC Providers → JDBC
Provider Name → Data Source, select the Data Source and click Test
Connection. You will see some messages indicating that Test Connection
was successful.

6. Install DummySnaLu0 in the <toolkit root>\jars directory in the WebSphere
Business Integration Server Foundation.

a. In Websphere Administration console, select Resources\Resource
Adapter\Install RAR and add the following setting:

name: dummysnalu0

b. Define JAAS Authentication entries:

i. Select Security\JAAS Configuration\J2C Authentication Data.

ii. Click New.

iii. Add the following parameters:

• Alias: sna
• User ID: sna
• Password: sna

c. Define the J2C Connection Factories:

i. Select Resources\Resource Adapter\dummysnalu0.

ii. Click J2C Connection Factories.

iii. Click New.

iv. Add the following parameters

• Name: snalu0
• JNDI name: snalu0
• Component-managed Authentication alias: sna
• Container-managed Authentication alias: sna

220 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

d. Select Resources\ Resource Adapter\dummysnalu0\J2C Connection
Factories\snalu0, click Custom Properties, and change the following
parameters:

• TestFile: http://127.0.0.1:9080/BTTHTMLSampleBPWeb/response.res
• userName: sna
• userPassword: sna

7. Start the applications.

a. In the navigation bar, select Applications → Enterprise Applications.

b. Select BaseSample.ear and click Start.

c. Open a Web browser, and input the following URL to run
BaseSample.ear:

http://serverName:9080/BaseSampleWeb/btt/html/sign/prepareSignIn.do

 Chapter 7. Testing and deployment 221

222 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Part 2 Development
with Branch
Transformation
Toolkit V5.1

(We need to have some content here. According to ITSO style, we cannot have a
Part file with only a headline.)

Part 2

© Copyright IBM Corp. 2006. All rights reserved. 223

224 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Chapter 8. Building an application with
Branch Transformation
Toolkit V5.1

This chapter introduces the development capabilities and tooling that Branch
Transformation Toolkit v5.1 provides. In this chapter, we:

� Give background information required to implement a withdrawal operation.

� Introduce WebSphere Studio Application Developer and WebSphere Studio
Application Developer Integration Edition.

� Develop a Struts Web application to demonstrate how to use the CHA Editor,
the Format Editor, the Struts Tools BTT Extensions, the Business Process
BTT Wizard, and the Graphical Builder.

� Describe Java client development.

This chapter is organized into the following sections:

� 8.1, “Before getting started” on page 226
� 8.2, “Leveraging the WebSphere Studio features” on page 235
� 8.3, “Developing an application using Branch Transformation Toolkit” on

page 248
� 8.4, “Developing a rich Java client” on page 431

8

© Copyright IBM Corp. 2006. All rights reserved. 225

8.1 Before getting started
This chapter discusses the construction of a sample Branch Transformation
Toolkit application. Before starting, you should know the application scenario and
other background information.

8.1.1 Application scenario
Withdrawal, deposit, and transfer are typical services used by a bank customer.
This chapter talks about developing a withdrawal operation, which involves
withdrawing money from a customer account. Such an operation requires
information such as:

� The account number from which money will be withdrawn.
� The amount to be withdrawn.
� The withdrawal date.
� The branch from where the withdrawal will be performed.

Additional requirements include the following:

� Maintenance of a daily transaction log.

This includes developing a journal service that consists of a database
schema in which one record is added each time a transaction is sent to the
host, and is updated with the host reply.

� Format in which data is sent to the host.

Data is sent to the host using messages that must follow a set of formatting
rules. This constraint should guide you when defining new format elements.
The customer provides the information required to define these formats.

The format of the data to be sent for the withdrawal operation is as follows:

Tx02AN=10012002377460000018#DT=28092000#AM=2000#BR=1005#

In this format:

– Tx02: Transaction type
– AN: Account number
– DT: Date
– AM: Amount
– BR: Branch ID

� Validation of the view input data

When errors occur, messages notifying this situation must be displayed.

Note: Each value ends with the # delimiter.

226 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

A real-world situation involves a branch employee starting a workstation,
inputting and validating the customer's data before a withdrawal operation is
performed. In our sample, we provide implementation of these actions, in
addition to a customer search view to initialize the environment.

After the environment is started, a graphical interface prompts the branch
employee to edit information in the entry fields of the view, such as the
customer's account number and the withdrawal amount.

After the required information is supplied, the workstation performs initial
validation, requests the data from the system, and data is then sent to the server.
The server should do the following:

� Create a journal record.
� Send formatted data to the host.
� Receive a host reply.
� Send a reply to the client process and update the last record with the host

reply.

The other services that can be developed to improve this application, although
not included in this book, are, printing and delivering a receipt to the client, and
updating the cash drawers in order to keep control of the cash amount.

8.1.2 Developing the system specification
Developing the system specification is usually the first step to system
development. It minimizes the gap between the application scenario and the
implementation.

Specification includes architecture, component interactions, message definition,
and internal data structure.

Architecture
For the scenario in our sample, we built a Web application using Branch
Transformation Toolkit v5.1 to achieve the goal. A typical architecture of this kind

 Running H/F 1 227

of application includes WebSphere Application Server, DB/2 database server,
Host, that is, S/390®, and Web Browser, as shown in Figure 8-1.

Figure 8-1 The typical architecture of a Branch Transformation Toolkit Web application

In our application, we used two services:

� Journal service

This service is based on a database and keeps information about the
operations performed during a predefined period of time. We simulated this
service with a dummy service named DummyJournal. In the second stage,
we substituted the DummyJournal with a real journal service that accesses a
real DB/2 database.

� Host transaction service

This service is used to send and receive formatted data to and from a
simulated host. We simulated a SNA LU0 protocol with a dummy host
communication service. This dummy service was named
DummyLu0SnaSession.

Component interactions
Here we set up a withdrawal operation. There are three stages to completing a
withdrawal operation.

Stage 1
A teller uses a Web browser to connect to a Branch Transformation Toolkit v5.1
application to perform a withdrawal operation. An input form is displayed in the
browser, requesting the account number and the amount.

WebSphere Software

Host
Transaction Service

Host

Journal
Service

BTT 5.1
Application

Web Client

Request

Reply

Request

Reply

228 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Stage 2
After obtaining the customer’s account number and the amount details, the teller
inputs these two numbers and submits the request. The application then
initializes the transaction, appends Date, Session, and Branch data to withdrawal
data (Account Number and Amount). Journal service takes this formatted data
and stores it as the log of this transaction in the database.

Stage 3
When the journal service is completed, the application sends the formatted data
to the host to execute the real withdrawal operation. The host sends the reply
after completing the execution. The result is displayed in the Web browser.

Message definition
When you understood fully the functionality of the application, you should
determine the required host transaction messages and the data intended for the
electronic journal service.

Host transaction messages
The host transaction messages are:

� Requests sent to the host include the following:

– A static transaction header code, for example, Tx02
– Account number
– Date
– Amount
– Branch identifier

� Replies from the host include the following:

– Reply code
– Updated account balance
– Error message

Electronic journal messages
The electronic journal messages include:

� The data that should be stored prior to sending data to the host include the
following:

– User identification
– Terminal identifier
– Transaction data being sent to host

� The data that should be stored after receiving the host reply, include the
following:

– Reply code

 Running H/F 1 229

– Error message
– Updated account balance

Internal data structure
In message definition, you will see that there is a hierarchical structure. In
general, a typical message in a real branch application includes branch identifier,
terminal identifier, user identification, and so on, as shown in Figure 8-2.

In Figure 8-2, each branch has a branch identifier. Terminal identifier and user
identification are associated with the workstation. Other data belongs to the
customer and the operation itself.

Figure 8-2 Hierarchical nature of a bank

In Branch Transformation Toolkit, the term Context is used to represent each
element in the hierarchy. Contexts are “objects that provide the ability to
structure resources according to the functional and business organization.”

Branch A

Customer 1

Bank

Branch B Branch C

Customer 2 Customer 3 Customer 4

Workstation 2 Workstation 3 Workstation 4Workstation 1

230 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

In general, contexts are chained hierarchically. With this concept, a withdrawal
operation might involve a Branch context, a Workstation context, a
CustomerSession context, and a Withdrawal context. This relationship can be
organized into a context chain as shown in Figure 8-3 on page 231.

With this hierarchical data structure, you can generate messages with a specific
format with one or two method calls. This simplifies the effort of message
formatting and generation for different purposes within an application.

From Branch Transformation Toolkit v5.1, use the Common Hierarchical Area
(CHA) to manage the context hierarchy. The goal of CHA is to make context
hierarchy a distributed runtime repository. It provides context functionality in a
distributed server environment and enables that the information can be shared
among Branch Transformation Toolkit applications. See Figure 8-3.

Figure 8-3 Context chain for a withdrawal operation

There are two context types in CHA, local context and remote context:

� Local context

– This context has temporary runtime storage.
– It is dynamic in nature.

Editor Comment: From where is this quote excerpted? We need to cite the source
here. DS

branchCtx

customerSessionCtx

withdrawalCtx

workstationCtx

 Running H/F 1 231

– It is an anonymous or predefined context.
– It’s life expectancy is short.
– It cannot be shared by business processes and services.

� Remote context

– This context has a server side and a client side.

– The client side acts as a facade for the server side.

– The server side consists of an entity EJB and a session EJB.

– Both client and server sides connect to each other using J2EE EJB
technology.

– It is shared by business processes and services.

According to the arrangement of local and remote context, a typical context tree
is shown in Figure 8-4 on page 233. You should decide which context will be
remote and which context will be local while developing a Branch Transformation
Toolkit application. The rule of the thumb is to put the contexts that are intended
to be shared in the CHA server side, and the other temporary contexts in the
CHA client side.

232 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-4 Sample context tree in a Branch Transformation Toolkit V5.1 application

Performance improvement
Branch Transformation Toolkit v5.1 provides two key technologies to speed up
the access of remote context in a distributed environment.

� Read cache

– Caches read-only data stored in remote context.

– Reduces the amount of communication between the client side and the
server side.

– Has the same lifetime as its corresponding CHA context instance.

� Batch update

– Submits many small sequential updates as a single request.

– Reduces the amount of communication between the client side and the
server side.

CHA Server Side
(Remote Context)

CHA Client Side
(Local Context)

CHAInstance

ContextData

Root
Context

CHAInstance

Context

CHAInstance

Context

ContextContext

Context Context

 Running H/F 1 233

8.1.3 Branch Transformation Toolkit
IBM Branch Transformation Toolkit for WebSphere Studio is an application
framework and a set of specialized eclipse-based tools that accelerate the build
phase for transactional front office applications. It is designed to rapidly deliver
multi-channel transactional solutions, as shown in Figure 8-5. New Branch
Transformation Toolkit v5.1 framework or tools are based on the following design
principles:

� Leverages core IBM application development platform.

� Enhances tooling capabilities.

� Provides a framework for developing standards-based applications.

� Stays in sync with current and evolving standards, open source, and platform
evolution.

� Provides a path forward for WebSphere customers with limited J2EE
development experience, who need to quickly develop transactional business
applications.

Figure 8-5 Branch Transformation Toolkit rapidly delivers multi-channel transactional solutions

The key features and benefits of IBM Branch Transformation Toolkit for
WebSphere Studio include:

� Framework for multi-channel infrastructure supports the creation of integrated
retail delivery applications, a key factor in reducing the total cost of system
ownership.

Transforming Branches

Extending Branch Applications
to Multiple Channels

ATM/
Kiosk

Mobile
Devices

Internet

Contact
Centers

Platform

Teller

234 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� Time-saving features and integration build on the WebSphere Studio
environment to enable developers maximize their productivity and improve
the overall time to value.

� Tooling enhancements such as the new graphical workbench integrate
plug-ins for a broad view of the development environment to simplify the
creation of multi-tiered business applications.

� A robust banking solution gives retail banks desiring the control and flexibility
associated with building a branch teller application.

� A range of sample applications contains sample applications addressing both
base and advanced functionalities, such as implementation of Web services.

� Relevant to a variety of industries

Enables retail initiatives, not only in the banking industry, but any industry with
a desire to modernize enterprise applications.

8.2 Leveraging the WebSphere Studio features
Branch Transformation Toolkit v5.1 includes a graphical workbench and visual
development tools as add-ons to the WebSphere Studio Application Developer
or the WebSphere Studio Application Developer Integration Edition. This
provides users a set of integrated development tools for all e-business
development roles, including Web developers, Java developers, business
analysts, architects, and enterprise programmers.

The toolkit, based on standards and leveraging the WebSphere Application
Server and the WebSphere Business Integration Server Foundation, has the
following features:

� Application development tooling
� Scalability and availability features
� Administration, deployment, and monitoring tools

Depending on the configuration you use, the toolkit’s framework and tools
support two different WebSphere product lines, that is, WebSphere Application
Server/WebSphere Studio Application Developer and WebSphere Business
Integration Server Foundation/WebSphere Studio Application Developer
Integration Edition. See Figure 8-6 on page 236.

 Running H/F 1 235

Figure 8-6 Two configurations to use Branch Transformation Toolkit V5.1

As shown in Figure 8-6, the left panel shows the configuration of Branch
Transformation Toolkit v5.1/ WebSphere Application Server/ WebSphere Studio
Application Developer combination. Using this configuration, you can have full
J2EE features with extended Apache Struts support. In the right panel, it
combines Branch Transformation Toolkit v5.1/ WebSphere Business Integration
Server Foundation / WebSphere Studio Application Developer Integration
Edition. With this configuration, you can have full toolkit capabilities that are
critical in enterprise environment, including Process Choreographer, Clustering,
Fail-over, Workload Management, and so on.

Because Branch Transformation Toolkit v5.1 has a close relationship with
WebSphere Studio, a brief introduction to these two products, that is,
WebSphere Studio Application Developer and WebSphere Studio Application
Developer Integration Edition, is provided.

8.2.1 Development using WebSphere Studio Application Developer
The award-winning IBM WebSphere Studio Application Developer is a
comprehensive, integrated development environment for visually designing,

Branch Transformation
Toolkit

WebSphere Application
Server

IBM JRE

Branch Transformation
Toolkit

IBM JRE

WebSphere Business
Integration Server

Foundation

Features & Benefits
• Extended J2EE supported
• Adds Process Choreographer
• Adds Startup EJB
• Adds ActivitySession support

across multiple servers
• Adds Clustering, Fail-over, and

Workload Manager (WLM)
support

• Suitable for medium to large
enterprises

Features & Benefits
• Full J2EE support
• Struts HTML available

WebSphere Application
Server

236 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

constructing, testing, and deploying Web services, portals, and Java 2 Platform,
Enterprise Edition(J2EE) applications. WebSphere Studio Application Developer
accelerates J2EE development with a complete set of high productivity tools,
templates, and wizards.

Built on Eclipse, an open, industry-supported platform for development tools,
WebSphere Studio Application Developer enables you to adapt and extend your
development environment with best-of-breed plug-in tools from IBM, IBM
Business Partners, and the Eclipse community to match your needs and to
maximize developer productivity.

WebSphere Studio Application Developer features include:

� Support for J2EE 1.3, including EJB 2.0, Servlet 2.3, and JSP 1.2 levels.

� Concurrent support for WebSphere Application Server V4 (J2EE 1.2) and
WebSphere Application Server V5 (J2EE 1.3).

� Full EJB 2.0 support, including EJB Query Language (EJBQL),
multiple-mapping support for Container Managed Persistence (CMP) 2.0, and
message-driven beans.

� A set of visual portlet development tools and a WebSphere Portal unit test
environment. Support for IBM Portlet API and JSR 168, the industry standard
specification for portlet aggregation, personalization, presentation, and
security.

� Specialized support for Struts, which is a set of Java classes, and JSP tag
libraries that provide a conceptual framework for developing Web
applications.

� JavaServer™ Faces (JSF) support for drag-and-drop Web application
development.

� Lightweight runtime environment supports unit test of applications on local or
remote servers, including WebSphere Application Server (V4, V5 and V5.1),
WebSphere Application Server - Express (V5 and V5.1), and Apache Tomcat.
Includes WebSphere Portal V5.0, WebSphere Application Server V4, V5, and
V5.1 for unit test on local server.

� New Visual Editor for Java (Java-based client for building GUI components
with Swing or AWT).

� Support for both Rational ClearCase® LT and full Rational ClearCase.

The following sections describe the various application development tools that
come with this configuration of WebSphere Studio.

 Running H/F 1 237

Java development tools
The Java development tools included with WebSphere Studio support the
development of any Java application. They add Java perspectives to the
workbench as well as a number of views, editors, wizards, builders, and code
merging and refactoring tools. The Java development tools offer the following
capabilities:

� JDK 1.4.1 support.
� Automatic incremental compilation.
� One debugger for both local and remote debugging.
� Ability to run code with errors in methods.
� Crash protection and auto-recovery.
� Error reporting and correction.
� Java text editor with full syntax highlighting and complete content assist.
� Refactoring tools for reorganizing Java applications.
� Intelligent search, compare, and merge tools for Java source files.
� Scrapbook for evaluating code snippets.
� Pluggable runtime support for JRE™ switching and targeting multiple runtime

environments from IBM and other vendors.

Web development tools
The Web development environment in WebSphere Studio provides the tools
necessary to develop Web applications as defined in the Java Servlet 2.3
Specification and the JavaServer Pages 1.2 Specification. Web applications
include static Web pages, JavaServer Pages (JSPs), Java Servlets, deployment
descriptors (web.xml files), and other Web resources.

This environment brings all aspects of Web application development into a
common interface. Everyone in your Web site team, including content authors,
graphic artists, programmers, and Webmasters, can work on the same projects
and access the files they need. Within the integrated Web development
environment, it is easy to collaborate on creating, assembling, publishing,
deploying, and maintaining dynamic and interactive Web applications.

The Web development environment includes the following high-level capabilities:

� Web project creation, using either the J2EE-defined hierarchy or a static
version that reduces project overhead when dynamic elements are not
required.

� Creating and editing a Web deployment descriptor (web.xml) file.

� Creating, validating, editing, and debugging JSP and HTML files.

� Editing and validating JavaScript™.

� Supporting custom JSP tags (taglib) based on the JSP 1.2 specification.

238 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� Cataloging and organizing reusable programming objects such as HTML,
JavaScript, and JSP code, along with files and tag libraries, with the help of
an extensible view called Library view.

� Editing images and animation.

� Supporting Cascading Style Sheet (CSS) editing.

� Importing HTTP/FTP.

� Exporting FTP (simple resource copying) to a server.

� Web archiving (WAR) file import, export, and validation.

� Link viewing, parsing, validation, and management, including converting links,
flagging broken links, and fixing links as resources are moved or renamed.

� Creating servlets with a wizard and adding servlet mappings to the
deployment descriptor (web.xml) file.

� Generating Web applications using wizards that create Web resources from
database (SQL) queries and beans.

� Integrating with the WebSphere test environment.

� Publishing support for multiple Web server types.

Web services development tools
WebSphere Studio provides wizards and other tools to enable rapid
development of Web services. Web services are modular, standards-based
e-business applications that businesses can dynamically mix and match to
perform complex transactions with minimal programming. Web services allow
buyers and sellers all over the world to discover each other, connect dynamically,
and execute transactions in real time with minimal human interaction.

Some examples of Web services are theatre review articles, weather reports,
credit checks, stock quotations, travel advisories, airline travel reservation
processes, and so on. Each of these self-contained business services is an
application that can easily integrate with other services from the same or different
companies, to create a complete business process. This interoperability allows
businesses to publish dynamically, discover, and bind a range of Web services
through the Internet.

The Web services development tools provided in WebSphere Studio are based
on open, cross-platform standards:

� Universal Description Discovery and Integration (UDDI)

UDDI enables businesses to describe themselves, publish technical
specifications on how they want to conduct e-business with other companies,
and search for other businesses that provide the goods and services they
need, all through online UDDI registries.

 Running H/F 1 239

� Simple Object Access Protocol (SOAP)

SOAP is a standard for reliably transporting electronic business messages
from one business application to another over the Internet.

� Web Services Description Language (WSDL)

WSDL describes programs accessible through the Internet or other networks,
and the message formats and protocols used to communicate with them.

Enterprise JavaBeans (EJB) development tools
The EJB development environment features full EJB 1.1 and 2.0 support, an EJB
test client, a unit test environment for J2EE, and deployment support for Web
archive (WAR) files and enterprise archive (EAR) files. Entity beans can be
mapped to databases, and EJB components generated to tie into transaction
processing systems. XML provides an extended format for deployment
descriptors within EJB.

The following EJB development tools are included:

� Tools for import and export, creation and code generation, and editing, as
well as support for standard deployment descriptors and extensions and
bindings specific to WebSphere Application Server.

� EJB-to-RDB mapping tools that provide the model runtime environment and
interface for editing the mapping between EJB beans and relational database
tables with top-down and bottom-up capability. The mappers support
associations, inheritance, and converters and composers as helpers on
column maps.

� A query engine that supports deployed code by generating SQL strings into
persistent classes.

� Tools that provide the ability to create, edit, and validate EAR files.

� Editors for deployment descriptors.

� Graphical RDB schema viewing and editing tools.

� The deployment tools for enterprise beans provides a command-line
environment for you to run overnight build processes and automatically
generate your deployment code in batch mode.

XML and XSL tools
The comprehensive XML toolset includes components for building DTDs, XML
schemas, XML, and XSL files. It also supports integration of relational data and
XML.

240 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The XML Editor simplifies development tasks in the following ways:

� Provides a wizard that makes it quick and easy to create XML files from
scratch, or from existing DTD or XML schema files.

� Provides a Design view and a Source view. The Design view represents the
XML file simultaneously as a table and a tree, which helps make navigation
and editing easier. You can use the Source view to view and work with a file's
source code directly.

� Enables you to add a DTD declaration or XML schema information to an XML
editor.

Relational database tools
WebSphere Studio provides you with relational database tools that you need to
work with relational databases in your application development. The relational
database tools include views, wizards, editors, and other features that make it
easy for you to develop and test the database elements of your application.
Unless explicitly stated, the features in the relational database tools support all
database vendors.

You can manage the database definitions and connections that you need for
your application development, connect to databases, import database
definitions, and define new databases, schemas, tables, and views.

The SQL query builder provides a visual interface for creating and executing
SQL statements. You can create a simple statement or add complex expressions
and grouping. When you are satisfied with your statement, use the SQL to XML
wizard to generate an XML document as well as XSL, DTD, XSD, and HTML
files, plus other related artifacts, and then use the files to implement your query in
other applications, for example, a servlet or JSP.

Struts application development tools
Struts is a set of Java classes and JSP tag libraries that provide a conceptual
framework for developing Web applications. The Struts technology is open
source and was developed as part of the Apache Software Foundation's Jakarta
project.

For an overview of Struts, including information about how WebSphere Studio
supports the technology, refer to the following Web site:

http://struts.apache.org/index.html

Component test tools
The component test tools provide a framework for defining and executing test
cases. The basic framework supports three sorts of test cases, that is, manual,

 Running H/F 1 241

http://struts.apache.org/index.html

Java, and HTTP. You can also create report generators to work with the data
returned by an executed test case.

Use the component test tools to perform the following tasks:

� Define manual test cases that automate a tester's to-do list.

� Define HTTP test cases that automate requests against a Web site.

� Define Java test cases that implement the JUnit framework to automate Java
method calls.

� Run test cases locally or remotely, using the Agent Controller.

� Track execution results as the test case executes.

� Generate reports on test case information.

� Define new report generators.

The tools can be used by developers to test their code or by testers to coordinate
project-wide testing efforts.

Testing and publishing tools
The testing and publishing tools, referred to in this section as Server tools,
provide a unit test environment, where you can test JSP files, servlets, and
HTML files. Server tools also provide the capability to configure other local or
remote servers for integrated testing and debugging of Web and EJB
applications.

To configure remote servers, you should have RAC, which is included with the
product, installed on the remote system. Server tools support the following
projects:

� Web projects that might contain JSP files, HTML files, servlets, and beans.

� EJB projects that contain enterprise beans.

� Enterprise Application projects that may contain Java archive (JAR) files or
Web archive (WAR) files, or both, and pointers to other Web or EJB projects.

Profiling tools
WebSphere Studio provides tools that enable you to test your application's
performance early in the development cycle. This allows enough time to make
architectural changes and the resulting implementation changes. This reduces
risk early in the cycle, and avoids problems in the final performance tests. The
Profiling tools bring together a range of techniques that let you explore many
aspects of your program.

242 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Debuggers
All the products based on Eclipse include a debugger that enables you to detect
and diagnose errors in your programs that are running either locally or remotely.
The debugger lets you control the execution of your program by setting
breakpoints, suspending execution, stepping through your code, and examining
the contents of variables.

You can debug live server-side code as well as programs running locally on your
workstation. The debugger includes a Debug view that shows threads and stack
frames, a Processes view that shows all currently running and recently
terminated processes, and a Console view that lets you interact with running
processes. There are also views that display breakpoints and let you inspect
variables.

For more information, refer to the IBM Redbook WebSphere Studio Application
Developer Version 5 Programming Guide, SG24-6957.

8.2.2 Using Integration Edition
WebSphere Studio Application Developer Integration Edition v5.1, which is
optimized for developing applications that deploy to IBM WebSphere Business
Integration Server Foundation v5.1, delivers a next generation integration
platform optimized for building and deploying composite applications that extend
and integrate existing IT assets.

The advantages of WebSphere Studio Application Developer Integration Edition
v5.1 include:

� Extend and integrate existing IT assets using a next generation integration
development environment optimized for building composite applications that
deploy to IBM WebSphere Business Integration Server Foundation.

� Maximize the return on your IT investments by creating easily reusable
services out of your Web services, Java assets, back-end systems, packaged
applications, people, and processes.

� Improve your IT responsiveness by leveraging a service-oriented architecture
to build modular applications that are designed to adapt quickly to change.

� Expand the reach of your existing systems using a broad portfolio of rich
application and technology adapters.

� Maximize your developer productivity by quickly constructing new
process-based applications using drag-and-drop development tools to
visually coordinate the interactions between your software assets.

� Anticipate change by using business rules to embed adaptable business logic
into your applications and business processes.

 Running H/F 1 243

� Minimize your development, deployment, and administration costs by building
on the industry-leading, industry-tested, industry-supported WebSphere
platform.

� Protect your infrastructure investments and minimize training costs by
developing applications using industry supported open standards

Following are the distinct features that WebSphere Studio Application Developer
Integration Edition provides:

BPEL4WS support
Business Process Execution Language for Web Services (BPEL4WS) defines a
model and a grammar for describing the behavior of a business process based
on interactions between the process and its partners. Support for BPEL4WS
includes:

� Application assembly, deployment, and runtime support for BPEL4WS-based
business processes.

� Intuitive drag-and-drop tools to visually define the sequence and flow of
BPEL4WS business processes.

� A visual business process debugger to step through and debug BPEL4WS
business processes.

� Compensation support to provide transaction rollback such as support for
loosely coupled business processes that cannot be undone automatically by
the application server.

� Flexibility to develop processes using a top-down, bottom-up, or
meet-in-the-middle approach.

� A standards-based XML Path Language (XPATH) / Extensible Stylesheet
Transformation (XSLT) wizard to map data between nodes in a process

� Integrated fault handling to provide an easy and integrated means of
performing in-flow exception handling.

� A visual condition builder allowing you to easily direct the execution of
BPEL4WS processes.

� Support for including Java snippets and artifacts as part of a business
process.

Human workflow support
Human workflow support expands the reach of BPEL4WS to include activities
that require human interaction as steps in an automated business process.
Business processes involving human interaction are interruptible and persistent,

244 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

for example, a person may take a long time to complete a task, and resume
when the person completes the task. Human workflow support includes:

� Staff activity nodes to represent a step in a business process that is
performed manually.

� Ability to assign people, for example those who report to you directly, to
specific instances of a process through staff queries that are resolved at
runtime, using an existing enterprise directory.

� Graphical browser-based interface for querying, claiming, working with,
completing, and transferring work items to another user.

� Work item management support for managing the creation, transfer, and
deletion of work items.

� Dynamic setting of duration and calendar attributes for staff activities.

� Dynamic setting of staff assignment through custom attributes.

Back-end system connectivity
Back-end system connectivity supports building Web applications and
BPEL4WS business processes that integrate with back-end systems, including
the following:

� Integrated tool support for using J2EE Connector Architecture 1.0 (JCA) 1.0
resource adapters to access back-end systems.

� Enhanced tool integration for JCA adapters with tool plug-in extensions that
are available from IBM and business partners.

� Easy to use tools for creating services out of JCA resource adapters and
including those services as part of a BPEL4WS business process.

� Enhanced JCA 1.0 resource adapters included for CICS®, IBM Host
On-Demand, and IBM IMS™, which is for development use only.

� Sophisticated wizards to manage the low-level data handling requirements for
JCA resource adapters.

� Wizards to quickly and simply expose CICS or IMS programs as enterprise
services, including the ability to import definitions from COBOL, C structures,
CICS basic mapping support (BMS), and IMS Message Format Service
(MFS) definitions.

� Support for the entire suite of WebSphere Business Integration Adapters.

Business rule beans
Business rule beans offer a powerful, real-time framework for defining,
executing, and managing business rules that encapsulate business policies that
vary based on changes in the business environment. For example, a simple

 Running H/F 1 245

business rule might be, “If a customer's shopping cart is greater than $X, then
offer a Y% discount." Business rule support includes the following:

� Easy to use tools for defining, executing, and managing business rules.

� Cheat sheet for defining business rules.

� Update business rules at runtime using a straightforward user interface,
without the need to bring the application or server down.

� Organize business rules into logical categories using the business rules
beans framework.

� Define a start and end date until when a rule is effective.

Programming model extensions
This accelerates large-scale application development by taking advantage of the
latest innovations that build on today's J2EE standards. Programming model
extensions include:

� Asynchronous beans

This enables J2EE applications to decompose operations into parallel tasks
in order to speed performance.

� Startup beans

This enables J2EE applications to execute business logic automatically,
whenever an application starts or stops normally.

� Last participant support

This provides automated coordination for transactions, including two-phase
commit resources and a single, one-phase commit resource.

� Internationalization service

This allows customers to build applications that can automatically adjust to
handle global audiences.

� Work areas

This provides the ability to efficiently share information across a distributed
application.

� Scheduler service

This enables tasks to be executed at a requested time. When used in
conjunction with asynchronous beans, it enables batch processing
applications within J2EE.

� Activity session services

This provides the ability to extend the scope of and group multiple local
transactions.

246 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� Dynamic query service

This provides the ability to pass in and execute SQL query statements at
runtime.

� Gateway filters

This allows customers to write filters for the Web Services Gateway such as
filters that select a target service and port, capture Web service invocation
information, and handle exceptions.

� Object pools

This enables an application to avoid creating new Java objects repeatedly.

� Container-managed messaging

This offers automated support for outbound as well as inbound messaging.

� Distributed map

This offers an interface to enable J2EE applications and system components
to cache and share Java objects by storing a reference to the object in the
cache in order to improve performance.

� Container-Managed Persistence over anything

This extends the existing J2EE Container-Managed Persistence (CMP)
framework to support any back-end system or service that supports create,
retrieve, update, and delete (CRUD) methods.

Quality of service
� Application profiling

This allows customers to carefully optimize the performance of their EJB CMP
2.0 applications without impacting application source code by delivering a
mechanism for instructing the same component to interact with the runtime
infrastructure, such as a database, differently depending on the application
that calls it.

� Back-up cluster support

This enables customers to automatically configure their system to set up a
back-up cluster of servers if the primary cluster fails, without having to write
any code.

For more information, refer to the IBM Redbook Exploring WebSphere Studio
Application Developer Integration Edition 5.0, SG24-6200.

 Running H/F 1 247

8.3 Developing an application using Branch
Transformation Toolkit

Branch Transformation Toolkit v5.1 includes a graphical workbench and visual
development tools as add-ons to the WebSphere Studio Application Developer
or the WebSphere Studio Application Developer Integration Edition. It provides
tools to create multi-channel application in bottom-up and top-down approaches,

8.3.1 Development paths
Branch Transformation Toolkit v5.1 is a versatile toolset that allows the
development of a multi-channel application along a variety of paths. The
development path used depends on whether the development begins from a new
project, or from existing components. Two typical paths in application
development are:

� Top-down development, which starts with a high-level architecture.
� Bottom-up development, which starts with existing components.

Top-down development
The first step in the development path is the topology of the target system
defined by the technical architect. From there, you can use the toolkit's Graphical
Builder to generate the appropriate artifacts, such as presentation model,
business model, and so on. You can then divide the tasks of realizing artifacts
assigning them to different team members. This shows the advantage of
top-down development path, which is, parallel development with an integrated
architecture.

After the artifacts are realized, it is time to generate the real working code. With
Branch Transformation Toolkit tools, you can control every generation step and
make adjustments to the generation options as well as to the results created by
the Graphical Builder and other ancillary tools.

The top-down path is also typical for prototypes, rapid application development
(RAD), and initial versions of an application. This development path guarantees
the option for clean, object-oriented implementation of the business model, as
well as performing state of the art J2EE implementations.

248 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Following is a typical development path of a Branch Transformation Toolkit
application using the top-down approach:

1. Create a Branch Transformation Toolkit project, as shown in Figure 8-7.

Figure 8-7 The Branch Transformation Toolkit project wizard

 Running H/F 1 249

2. Elaborate the presentation layer, as shown in Figure 8-8.

Figure 8-8 Create models for the presentation layer

250 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3. Construct the business layer as shown in Figure 8-9.

Figure 8-9 Create Single Action EJB as the business operation

4. Create any required business processes. See Figure 8-10 on page 252

 Running H/F 1 251

Figure 8-10 Use BPEL as the business operation

252 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5. Associate presentation and business logic as shown in Figure 8-11.

Figure 8-11 Link the presentation layer and business layer by invokers

Bottom-up development
The bottom-up approach is typical for a new application or application extension,
based on the existing components. Depending on the action you are carrying
out, Graphical Builder is the key tool that keeps the architecture of an application
clear and extensible.

The first step in this path is capturing the existing origianl code as a presentation
or business model in the Graphical Builder. From there, you can generate the
components, that is, the hierarchical context, business processes, and UI flows.
You can control every capture or generation step and make adjustments to the
options as well as to the results produced by the Graphical Builder. The

 Running H/F 1 253

generated results are a good base to start with the changes and adjustments.
See Figure 8-12.

Figure 8-12 Bottom-up development with existing components

For developing a new application using the bottom-up approach, use the CHA
Editor, the Format Editor, the Business Process BTT Wizards, and the Struts
tools BTT Extensions to construct each component of an application. Although
you can complete a Branch Transformation Toolkit application this way, it is
better to use the Graphical Builder to weave all these components into a big
picture. Figure 8-12 helps you spot potential performance bottlenecks and design
flaws.

8.3.2 Preparing for sample application
In our sample, we developed a Branch Transformation Toolkit Web application
based on the application scenario described in 8.1.1, “Application scenario” on

254 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

page 226. Through the construction of the withdrawal operation, you can explore
the CHA Editor, the Format Editor, the Business Process BTT Wizard, the Struts
Tools BTT Extensions, and the Graphical Builder.

Creating a Branch Transformation Toolkit project
Create a Branch Transformation Toolkit project by performing the following
tasks:

1. From the WebSphere Studio Application Developer menu, select File →
New → Other.

2. In the dialog box, select IBM Branch Transformation Toolkit in the left
navigation panel, and BTT Project in the right panel, as shown in
Figure 8-13, and Click Next.

Figure 8-13 Creating a Branch Transformation Toolkit project

 Running H/F 1 255

3. In the new Enterprise Application Project page, enter BTTBank as the EAR
name as shown in Figure 8-14, and click Next.

Figure 8-14 Specify the EAR name of the Enterprise Application Project

4. In the next dialog box shown in Figure 8-15 on page 257, you are prompted to
confirm the BTT Application project name, the CHA Editor, and the Format

256 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Editor file names and optional supporting modules. Accept the defaults and
click Finish.

Figure 8-15 The New Module Project page of the toolkit project wizard

5. After a couple of moments, the selected projects are created, as shown in
Figure 8-16.

Figure 8-16 Skeleton projects created by toolkit project wizard

 Running H/F 1 257

Setting up the sample database
This section provides instructions for deploying the BTTBank sample database.
In our sample, we used DB2 v8.1 as the database management system.

To create the database, create the connection, and then create the tables for the
BTTBank sample, as described:

1. Create a database, BTTBank, by entering the following command in the DB2
command window:

DB2 CREATE DATABASE BTTBank

2. Create CHA tables.

If the userID and password for the database BTTBank is
db2admin/db2admin:

a. Open the DB2 command window and change to the directory
<BTT_install_dir>\dbtools\Windows\DB2\tableDefinition\cha\

b. In the DB2 command window, run:

DB2 CONNECT TO BTTBank USER db2admin USING db2admin

c. Type the following command:

db2 -tvf createCHATables.ddl

You will see messages indicating that CHA tables have been created
successfully.

Setting up the WebSphere testing environment
In this section, we provide instructions for setting up a WebSphere testing
environment for our sample application in WebSphere Studio Application
Developer Integration Edition v5.1.1.

Creating a server configuration
Follow these steps to create a server configuration.

1. Ensure that the WebSphere Studio Application Developer Integration Edition
v5.1.1 is started.

2. Open the Server perspective.

3. In the Server Configuration view, right-click the empty area and select New →
Server and Server Configuration.

258 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

4. Create a new server configuration with the following properties, as shown in
Figure 8-17, and click Finish:

– Server name: WBI SF
– Folder: Servers
– Server Type: WebSphere version 5.1 Integration Test Environment

Figure 8-17 Create a server configuration

Configuring the DataSource
To configure a new DataSource, perform the following tasks:

1. Open the server configuration.

Double-click the server configuration WBI SF in the Server Configuration or
Server view. You will see the file named WBI SF opened in the Editor panel.

 Running H/F 1 259

2. Add a JAAS Authentication Entry.

Select the Security tab. You will see the Cell Settings section in this page.
Click Add to the right of the JAAS Authentication Entries. Enter the following
values to create a JAAS Authentication Entry, as shown in Figure 8-18, and
click OK:

– Alias: bttuser
– User ID: db2admin
– Password: db2admin
– Description: BTT Sample

Figure 8-18 Add a JAAS authentication entry

3. Add a JDBC provider.

a. Select the Data Source tab. You will see the Server Settings section in
this page.

b. Click Add to the right of the JDBC provider list.

260 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

c. In the Create a JDBC Provider dialog box, select IBM DB2 as the
Database type, and DB2 JDBC Provider (XA) in the JDBC provider type
list box, as shown in Figure 8-19.

d. Click Next.

Figure 8-19 Create a JDBC provider

 Running H/F 1 261

e. Name this provider XA DB2 JDBC in the next page of the wizard as shown in
Figure 8-20, and click Finish to create the provider.

Figure 8-20 Name this provider XA DB2 JDBC

4. Add a data source definition.

a. Ensure that the XA DB2 JDBC provider is selected.

a. Click the second Add in this page.

262 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

b. Select DB2 JDBC Provider (XA), and then click Next, as shown in
Figure 8-21.

Figure 8-21 Select DB2 JDBC Provider (XA) provider for the data source

c. In the next dialog box, enter the following properties to configure the data
source:

• Name: CHADataSource
• JNDI name: jdbc/CHADataSource
• Description: BTT Sample
• Component-managed authentication alias: bttuser
• Container-managed authentication alias: bttuser

 Running H/F 1 263

Make sure you have selected the check box against Use this data source
in container managed persistence (CMP). For other fields, retain the
default values, as shown in Figure 8-22.

d. Click Next.

Figure 8-22 The settings for CHADataSource

264 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

e. In the next dialog box, change the databaseName from sample to BTTBank,
and then click Finish, as shown in Figure 8-23.

Figure 8-23 Specify database name

f. Save the server configuration by pressing the Ctrl+S keys.

8.3.3 Creating the context hierarchy with CHA Editor
The CHA Editor provides a graphical and simple way for users to create and edit
the dse file set. The dse file set stores the configuration information used by the

 Running H/F 1 265

Branch Transformation Toolkit’s runtime framework. This configuration
information includes runtime settings, contexts, data elements, types, and so on.
Combined with the formatting service, both provide the key value for Branch
Transformation Toolkit developers. See Figure 8-24.

I

Figure 8-24 CHA Editor and Format Editor are tools used to manipulate dse file set

Due to the close relationship between the CHA Editor and the Format Editor, this
section first describes using the CHA Editor, followed by the Format Editor.

Introduction
The CHA Editor provides a graphical and easier way to work with CHA contexts
and their data elements and types. Since they are defined within the XML files, it
is possible to define, modify, and delete CHA contexts, data elements, and types,
using any text editor. However, as the number of definitions in the files increase
and the CHA structure increases in size and complexity, maintaining a mental
picture of the entire CHA structure becomes increasingly difficult. The CHA
Editor provides a visual representation of the structure and relieves you of the
need to deal with XML tags directly. This allows you to concentrate on business
requirements and issues.

The working of the CHA Editor
When the CHA Editor initializes, it reads the CHA configuration file in the project.
This file identifies the context, data, and type definition XML files. By default,

BTT CHA

dsectxt.xml
dsedata.xml
dsetype.xml

BTT Formatter

dsefmts.xml

CHA Editor

Format Editor

User Requirement

266 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

these files are called dsectxt.xml, dsedata.xml, and dsetype.xml. The CHA Editor
then loads and parses the definitions to build the CHA data structures. The CHA
Editor displays the CHA contexts, data elements, types, and their definitions in a
set of views.

When you make an addition, modification, or deletion to the CHA contexts and
data definitions within one view in the CHA Editor, the Editor updates the other
views to reflect the changes. For example, if you create a CHA context within the
CHA page of the Editor view, the Editor adds the CHA context to the Outline view
and adds the definition for the new CHA context to the CHA definition file.

Views
The CHA Editor consists of the following views:

� Editor view: This is the primary view of the CHA Editor. It consists of a set of
tabbed pages in which you can edit values used by the CHA:

– CHA page: This page displays the CHA hierarchy trees that describe the
relationships between various CHA contexts. Each node in the hierarchy
tree is a rectangular container containing a single keyed collection.
Additionally, the Editor panel has a palette that provides following tools:

• Select: This is used to select CHA contexts.
• Connection: This is used to chain contexts into hierarchies.
• Context Node drawer
• New Context. This is used to create a CHA context in the Editor.

– Configuration page: This page displays the contents of the CHA Editor's
configuration file, that is, the ones with the *.chae extension.

– Context file page: This page displays the contents of the CHA context
definition file. It displays the CHA contexts sorted alphabetically. The tab
displays the name of the file. For example, if the default file is used, the
name in the tab is dsectxt.xml.

– Data file page: This page displays the contents of the data definition file. It
displays the data elements sorted by category, that is, field, data, keyed
collection, indexed collection, and then alphabetically. The tab displays
the name of the file. For example, if the default file is used, the name in the
tab is dsedata.xml.

Note: Branch Transformation Toolkit does not support forward references,
that is, the definition being referred to must appear before the definition
making the reference. The order in which definitions appear in the definition
files might not match the order used to display the contexts, data elements,
and types in the various views of the CHA Editor.

 Running H/F 1 267

– Type file page: This page displays the contents of the type definition file. It
displays the types sorted alphabetically. The tab displays the name of the
file. For example, if the default file is used, the name in the tab is
dsetype.xml.

� CHA Data View: This lists all the data definitions. If this view is not visible, you
can make it visible by selecting Window → Show View → Other from the
main menu. In the IBM Branch Transformation Toolkit folder, select CHA
Data View when the Show View dialog box opens, and click OK.

� CHA Type View: This lists all the type definitions. If this view is not visible,
select Window → Show View → Other from the main menu. In the IBM
Branch Transformation Toolkit folder, select CHA Type View when the Show
View dialog box opens, and click OK.

In addition, the CHA Editor uses the following standard Application Developer
views:

� Outline view lists all the CHA contexts in alphabetical order. You can expand
each CHA context to display its data structure.

� Properties view displays the properties of the selected context, data
definition, type definition, and so on. These properties map to XML tag or tag
attributes such as ID, type, and parent.

� Package Explorer view displays the files created and used by the CHA Editor.

� Search view lists the results when you search the CHA contexts and
compound data elements referencing a specific data element.

268 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-25 shows the views relating to the CHA Editor.

Figure 8-25 Various views related to CHA Editor

 Running H/F 1 269

Creating data elements
To create data elements and context hierarchy for the withdrawal operation,
perform the following tasks:

1. Expand BTTBankBTT project and double-click the BTTBankBusiness.chae
file to open it, as shown in Figure 8-26.

Figure 8-26 Bring up the CHA Editor

270 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. Right-click CHA Data View in the right-hand side of the development
workbench, select Add New Data Element → New field from the context
menu, as shown in Figure 8-27.

A new data element named NewData1 is added in the CHA Data View. Select
NewData1. It’s properties will be shown in the Properties view.

Figure 8-27 Add a new data element

Note: If you cannot see the Properties view in the workbench, select
Window → Show View → Properties to bring it up. By default, the
Properties view overlaps the CHA Data View. You can drag the Properties
view and drop it in the Tasks view so that you can see both the CHA Data
View and Properties view at the same time.

 Running H/F 1 271

3. Change NewData1’s ID to AccountNumber in the Properties view and press
Enter, as shown in Figure 8-28.

Figure 8-28 Change ID to AccountNumber for the data element

4. Repeat the steps to add the following data elements:

– AccountBalance
– Amount
– Date
– TrxErrorMessage
– TrxReplyCode

272 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5. To create a keyed collection, which is often used to manage the structure of
data bundles, right-click the CHA Data View, and select Add New Data
Element → New kColl from the context menu, as shown in Figure 8-29.

Figure 8-29 Add a keyed collection to organize data

A new keyed collection named NewKeyedColl1 is added in the CHA Data
View. Change its ID to WithdrawalData in the Properties view and press
Enter, as shown in Figure 8-30.

Figure 8-30 Name the new keyed collection as withdrawalData

 Running H/F 1 273

6. Add references to other data elements in the keyed collection, as its content.
In the CHA Data View, right-click withdrawalData element, and select Add
Reference as Sub-Data from the context menu. You will see the data
elements defined earlier. Select the following data elements to add them into
withdrawalData collection one by one:

– AccountBalance
– AccountNumber
– Amount
– Date
– TrxErrorMessage
– TrxReplyCode

See Figure 8-31

Figure 8-31 Add subdata elements into withdrawalData collection

274 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

You can see all the subdata elements if you expand withdrawalData element
in the CHA Data View, as shown in Figure 8-32. Press Ctrl+S to save your
work.

Figure 8-32 Expanded withdrawalData collection

Importing more data elements
You now know how to create fields and keyed collections. However, our sample
Branch Transformation Toolkit v5.1 application needs more data elements to run
correctly. Perform the following tasks to add the required data elements:

1. Open the file BTTBankBusiness.chae.

2. Click dsedata.xml tab in CHA Editor.

3. Copy the XML snippet in Example 8-1 and paste it just before the
</dsedata.xml> tag in the dsedata.xml file.

Example 8-1 More data elements required to run the sample application

<field id="BranchId"/>
<field id="CustomerId"/>
<field id="CustomerName"/>
<field id="dse_sessionId"/>
<field id="dse_pageId"/>
<field id="dse_replyPage"/>
<field id="HostBuff"/>
<field id="sessionID"/>

Note: You can also complete this task by dragging and dropping the
corresponding data elements into the withdrawalData in the CHA Data
View. If the number of data elements is small, this is a better way to add
data elements into collections.

 Running H/F 1 275

<field id="TID"/>
<field id="pw"/>
<field id="userId"/>
<field id="UserId"/>
<field id="WKSContext"/>
<field id="WKSParentContext"/>

<kColl id="branchData">
<refData refId="BranchId"/>

</kColl>

<kColl id="javaSessionData">
<refData refId="TID"/>
<refData refId="CustomerId"/>
<refData refId="CustomerName"/>
<refData refId="HostBuff"/>
<refData refId="sessionID"/>
<refData refId="UserId"/>

</kColl>

<kColl id="htmlSessionData">
<refData refId="TID"/>
<refData refId="CustomerId"/>
<refData refId="CustomerName"/>
<refData refId="HostBuff"/>
<refData refId="dse_sessionId"/>
<refData refId="dse_pageId"/>
<refData refId="dse_replyPage"/>
<refData refId="UserId"/>

</kColl>

<kColl id="signInData">
<refData refId="userId"/>
<refData refId="pw"/>

</kColl>

<kColl id="startupServerData">
<refData refId="TID"/>
<refData refId="WKSContext"/>
<refData refId="WKSParentContext"/>
<refData refId="sessionID"/>
<refData refId="UserId"/>

</kColl>

4. Press Ctrl+S to save the change.

276 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Creating the CHA context
You have to update the empty dsectxt.xml file with CHA Editor. To create a CHA
context, perform the following tasks:

1. Open the file BTTBankBusiness.chae. Switch to the CHA page as needed.

2. Select the New Context icon () in the Context Node drawer.
Drop it into the CAH Editor. A new CHA context, a rectangular container with
the name New Context1, appears as shown in Figure 8-33.

Figure 8-33 New context appears on the canvas of the CHA Editor

3. Select the newly created rectangular container. Change its ID to
withdrawalServerCtx in the Properties view. Press Enter.

4. The new context is complete. To assign a keyed collection data element to it
to hold the real data, right-click withdrawalServerCtx and select Add Keyed

Note: You can also do this by right-clicking the blank area in the Editor
view and selecting Create New Context from the context menu.

 Running H/F 1 277

Collection → Data → <kColl id="withdrawalData" to complete the
assignment, as shown in Figure 8-34.

Figure 8-34 Assign a keyed collection data element to withdrawalServerCtx

5. Press Ctrl+S to save your work.

The withdrawalServerCtx in the CHA Editor will look as displayed in Figure 8-35:

Figure 8-35 withdrawalServerCtx

You can also select the dsedata.xml and dsectxt.xml tabs to check if the
definition XML files are updated properly.

Note: All the valid keyed collections will be listed when you select Add
keyed Collection → Data. In our sample, we defined only one keyed
collection. Therefore, Figure 8-34 displays only one option.

Note: You can also do this by dragging and dropping the corresponding
keyed collection from the CHA Data View to the CHA context directly.

278 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Importing more contexts
To add more contexts for our sample application to run correctly, perform the
following tasks:

1. Open the file BTTBankBusiness.chae. Click the dsectxt.xml tab in the CHA
Editor.

2. Copy the XML snippet in Example 8-2 and paste it just before the
</dsectxt.xml> tag in the dsectxt.xml file.

Example 8-2 More contexts required to run the sample applications

<context id="javaSessionCtx" type="op">
<refKColl refId="javaSessionData"/>

</context>

<context id="htmlSessionCtx" type="op">
<refKColl refId="htmlSessionData"/>

</context>

<context id="signInCtx" type="op">
<refKColl refId="signInData"/>

</context>

<context id="branchServer" type="branch">
<refKColl refId="branchData"/>

</context>

<context id="startupServerCtx" parent="branchServer" type="op">
<refKColl refId="startupServerData"/>

</context>

3. Press Ctrl+S to save the change.

Configuring the CHA settings in dse.ini
In our sample, because we did not use multiple CHA servers, this option should
be turned off. Perform the following tasks to do this:

1. Open the BTTBankBusiness.chae file.

2. Click the dse.ini tab.

3. Locate the field with the ID supportMultipleCHAServers, in the cha-server
keyed collection. Change the value from true to false.

4. Press Ctrl+S to save your change.

 Running H/F 1 279

8.3.4 Creating message formats with Format Editor
Now that contexts and data elements are defined, you should create message
formats with the Format Editor.

Introduction
The Format Editor provides a graphical and easier way to work with the definition
file of formatters. It visualizes formatters in a Graphical Editor. This relieves you
from the chores of handling XML tags directly. Common editing features such as
cut, copy, paste, delete, undo, redo, load, save, drag-and-drop, reorder, and sort
are included in the Format Editor. With these features, you can work with
message formats quickly and easily.

The way the Format Editor works
When you double-click a Format Editor file, that is files with *.fmte extension, the
Format Editor starts. By default, the definition file dsefmts.xml is loaded. The
editor's configuration file also identifies the name of the CHA Editor file with
which a Format Editor file works.

Working with the CHA Editor file, the Format Editor displays the CHA contexts,
data elements, format elements, and their definitions, in its views. When you
make an addition, modification, or deletion to format elements, CHA contexts, or
data definitions, the editor updates the other views to reflect the changes. For
example, if you create a format definition within the FMTE page of the Editor
view, the Editor adds the format definition to the Outline view and adds the
definition to the format definition file. This means that you can use either the
Editor view or the Outline view to create, modify, and delete format elements.

Views
The Format Editor consists of the following views:

� Editor view is the primary view of the Format Editor, consisting of a set of
tabbed pages in which you can edit values:

– FMTE page: This page displays format hierarchy trees that describe the
relationships between various format definitions. Each node in the

Note: Branch Transformation Toolkit does not support forward references,
that is, the definition being referred to must appear before the definition
making the reference. The order in which format definitions appear in
definition files may not match the order used to display the format elements,
data elements, and CHA contexts in various views of the Format Editor.

280 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

hierarchy tree is a rectangular container that contains a format element. In
addition, there is a set of palettes on the left with the following features:

• Select: This is used to select format definitions.

• Format drawer: This drawer contains tools to create a format definition,
format elements for CHA contexts, or format elements for data.

• Add format decorator drawer: This drawer contains tools to add format
decorators.

– Configuration page: This page displays the contents of the Format Editor's
configuration file, that is, the one with the *.fmte extension.

– Format file page: This page displays the contents of the format definition
file. It displays the format definitions in the order in which they are created.
The tab displays the name of the file. For example, if the default file is
used, the name in the tab is dsefmts.xml.

� CHA Editor View provides a graphical user interface for you to edit CHA
contexts. This is the primary view of the CHA Editor.

� CHA Data View lists all the data elements. It first lists all the simple data
elements, and then the compound data elements. Both the simple data
elements and the compound data elements are in alphabetical order. You can
expand each compound data element to display its structure.

� CHA View lists all the CHA contexts in alphabetical order. You can expand
each CHA context to display its structure.

� Format Hierarchy View displays the hierarchical structure of the format you
selected in the Outline view. The Format Hierarchy View consists of two
subviews: the Data/CHA subview, which displays the structure of a data
element on the left, and the Format subview, which displays the structure of
its format on the right.

This view does not display the decorators. If this view is not visible, you can
make it visible by selecting Window → Show View → Other. Select Format
Hierarchy View in the IBM Branch Transformation Toolkit folder when the
Show View dialog box opens, and click OK.

� Format View lists all the format definitions in alphabetical order. You can
expand each format definition to display its structure. If this view is not visible,

Note: You can use this palette only to create format elements for
new CHA contexts or data elements. You cannot use it to create
format elements for existing CHA contexts and data elements. To
create format elements for existing CHA contexts or data elements,
use the context menu in the Outline view or in the main editing area
of the FMTE page.

 Running H/F 1 281

select Window → Show View → Other. Then select Format View in the IBM
Branch Transformation Toolkit folder, when the Show View dialog pops up
and click OK.

In addition, the Format Editor uses the following standard Application Developer
views:

� Outline view lists all the format definitions in alphabetical order. You can
expand each format definition to display its structure.

� Properties view displays the properties of the selected format definition, CHA
contexts, data definition, and so on. These properties map to XML tag or tag
attributes such as ID, type, and parent.

� Package Explorer view displays the files created and used by the Format
Editor.

� Search view lists the search results of format definitions referencing a specific
format definition.

Figure 8-36 shows the views related to Format Editor.

Figure 8-36 Various views related to Format Editor

282 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Creating format definitions and format elements
As seen in 8.1.1, “Application scenario” on page 226, you construct a specific
formatted message and send the message to the host. After the host completes
the transaction, it will send a reply back to indicate whether the operation was
successful or not.

In order to complete the withdraw operation, the sample application should
handle the following formatted messages:

Withdrawal request message
A sample of the withdrawal request message can be as follows:

Tx02AN=10012002377460000018#DT=28092000#AM=2000#BR=1005#

In this message:

� Tx02: Transaction type
� AN: Account number
� DT: Date
� AM: Amount
� BR: Branch ID

Withdrawal reply message
A sample of the withdrawal reply message can be as follows:

RC=00#BL=1,000#MSG=withdrawalOK#

In this message:

� RC: Reply code
� BL: Account balance
� MSG: Error message

Note: Each value ends with the # delimiter.

Note: Each value ends with the # delimiter.

 Running H/F 1 283

Two format definitions, withdrawalCSRequestFmt and withdrawalCSReplyFmt,
should be created for the withdraw operation.

1. Drag and drop the Format Definition icon () from Format
drawer to the Editor. The new format definition, that is, the one with a
rectangular shape, appears as shown in Figure 8-37.

Figure 8-37 New format definition

2. Select the newly created format definition. Change its ID to
withdrawalCSRequestFmt in the Properties view and press Enter.

3. To add the transaction type (Tx02) to the format definition, right-click the
Record Format of the withdrawalCSRequestFmt and select Add new
format element → Constant Format from the context menu.

Select Constant format and change its Constant Value to Tx02 in the
Properties view and press Enter.

4. Add the account number tag, that is, AN=, to this format definition, using the
Constant Format to complete this task. Right-click the Record Format

Note: You can also do this by right-clicking the blank area in the Editor
view, and selecting Add new format definition from the context menu.

Note: By default, a Record format element is also created and contained
by the newly created format definition. This is represented as an
embedded rectangular within the format definition as shown here.

284 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

element and select Add new format element → Constant Format from the
context menu.

Select the new Constant format element and change its Constant Value to
AN= in the Properties view and press Enter.

See Figure 8-38 on page 285

Figure 8-38 Two constant format elements added

5. Right-click the Record Format element and select Add Data element →
<field id = AccountNumber. A window pops up, asking you to select the
format for the new data. Select String Format from the drop-down list and
click Finish, as shown in Figure 8-39.

Note: Selecting the Record Format element is a bit tricky. Select, click, or
right-click it at the right edge of the entire format definition. You can then
perform the remaining operations easily.

 Running H/F 1 285

Figure 8-39 Select string format for AccountNumber data element

6. From the Add format decorator drawer in the palette, select the Null Check
Decorator icon (), and click the right edge of the Record
Format element, as shown in Figure 8-40. Lookfor a null check decorator at
the right-most side of the Record Format element.

Figure 8-40 Click the right edge of the Record Format element

7. Select the Delimiter icon () from the sample drawer and click
the right edge of the Record Format element. The delimiter decorator opens.
Set its Delimiter Char to # in the Properties view and press Enter.

See Figure 8-41.

286 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-41 withdrawalCSRequestFmt after delimiter decorator is added

8. Similarly, add the remaining format elements at the end of the record in order,
according to Table 8-1.

Table 8-1 Other format elements to be added

Figure 8-42 shows the final withdrawalCSRequestFmt.

Figure 8-42 Final withdrawalCSRequestFmt

9. Create another format definition with the ID withdrawalCSReplyFmt.

10.Add the following format elements to the definition withdrawalCSReplyFmt.

Table 8-2 Format elements for withdrawalCSReplyFmt

Figure 8-43 shows the final withdrawalCSReplyFmt.

Formatter Data name Constant format Decorator

Date Format Date DT= Null Check, Delimiter #

Numeric String
Format

Amount AM= Null Check, Delimiter #

String Format BranchId BR= Null Check, Delimiter #

Formatter Data name Constant format Decorator

String Format TrxReplyCode RC= Null Check, Delimiter #

Numeric String
Format

AccountBalance BL= Null Check, Delimiter #

String Format TrxErrorMessage MSG= Null Check, Delimiter #

 Running H/F 1 287

Figure 8-43 Final withdrawalCSReplyFmt

11.Save your work by pressing Ctrl+S.

Importing more formats
In our sample, since we need more formats for it to run correctly, perform the
following tasks to add the required formats:

1. Open the file BTTBankBusiness.fmte.

2. Click dsefmts.xml tab in Format Editor.

3. Copy the XML snippet in Example 8-3 and paste it just before the
</dsefmts.xml> tag in the dsefmts.xml file.

Example 8-3 Extra formats required by the sample application

<fmtDef id="preSendJournalFmt">
<hashtable>

<fObject dataName="UserId"/>
<fObject dataName="TID"/>
<fObject dataName="HostBuff"/>

</hashtable>
</fmtDef>
<fmtDef id="afterRecJournalFmt">

<hashtable>
<fObject dataName="TrxReplyCode"/>
<fObject dataName="AccountBalance"/>
<fObject dataName="TrxErrorMessage"/>

</hashtable>
</fmtDef>

4. Press Ctrl+S to save the change.

Adding format settings into dse.ini
By default, some settings are not found in dse.ini. If you do not add these
configurations, a Branch Transformation Toolkit application might not work as
expected. Perform the following tasks to add them:

1. Open the BTTBankBusiness.chae file.

2. Click the dse.ini tab, locate the keyed collection definition with the ID Files.
Add following field definition in it:

<field id="format" value="dsefmts.xml"/>

288 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3. Locate the keyed collection definition with the ID Formats, and replace the
entire keyed collection definition with the one listed in Example 8-4.

Example 8-4 The correct formats keyed collection definition

<kColl id="formats" dynamic="false" >
<field id="fTypedData" value="com.ibm.btt.base.TypedDataElementFormat" description="" />
<field id="codeSetTrans" value="com.ibm.btt.base.CodeSetTranslator" description="" />
<field id="compress" value="com.ibm.btt.base.Compressor" description="" />
<field id="constant" value="com.ibm.btt.base.ConstantFormat" description="" />
<field id="delim" value="com.ibm.btt.base.Delimiter" description="" />
<field id="fDate" value="com.ibm.btt.base.DateFormat" description="" />
<field id="fFloat" value="com.ibm.btt.base.FloatFormat" description="" />
<field id="fInteger" value="com.ibm.btt.base.IntegerFormat" description="" />
<field id="fixedLength" value="com.ibm.btt.base.FixedLength" description="" />
<field id="fNumString" value="com.ibm.btt.base.NumericStringFormat" description="" />
<field id="fObject" value="com.ibm.btt.base.ObjectFormat" description="" />
<field id="fString" value="com.ibm.btt.base.StringFormat" description="" />
<field id="fTime" value="com.ibm.btt.base.TimeFormat" description="" />
<field id="fXML" value="com.ibm.btt.base.XMLFormat" description="compound" />
<field id="hashtable" value="com.ibm.btt.base.HashtableFormat" description="compound" />
<field id="hashtableIColl" value="com.ibm.btt.base.HashtableIndexedCollectionFormat"

description="compound" />
<field id="iCollF" value="com.ibm.btt.base.IndexedCollectionFormat" description="compound"

/>
<field id="id" value="com.ibm.btt.base.Identifier" description="" />
<field id="map" value="com.ibm.dse.services.ldap.MapFormat" description="compound" />
<field id="mapper" value="com.ibm.btt.base.DataMapperFormat" description="compound" />
<field id="mapperConverter" value="com.ibm.btt.base.DataMapperConverterFormat"

description="" />
<field id="mapping" value="com.ibm.dse.services.ldap.Mapping" description="" />
<field id="maxLength" value="com.ibm.btt.base.MaximumLength" description="" />
<field id="nullCheck" value="com.ibm.btt.base.NullCheckDecorator" description="" />
<field id="record" value="com.ibm.btt.base.RecordFormat" description="compound" />
<field id="refFmt" value="java.lang.Object" description="" />

</kColl >

4. Press Ctrl+S to save the change.

8.3.5 The Branch Transformation Toolkit architecture
The IBM IBM Branch Transformation Toolkit for WebSphere Studio is a
component-based toolkit for developing enterprise e-business applications. The
Branch Transformation Toolkit enables the development of interfaces to the
services of a financial institution's information system so that they become
ubiquitous through all delivery channels such as the traditional branch, call
center, banking kiosk, Internet banking, and mobile access. This minimizes the

 Running H/F 1 289

necessity to develop new code and reduces the time required to make new
financial services available to all delivery channels.

The architecture and technological approach of the Branch Transformation
Toolkit creates retail delivery solutions that preserve investment in existing
enterprise systems while accounting for the inherent instability of any
infrastructure due to the innovations that appear frequently in the high-tech
industry. While providing a way to preserve the existing systems, the Branch
Transformation Toolkit is not tied to one particular platform since it is built on
JavaTM, the programming language of choice for handling platform change.

The toolkit also takes advantage of existing platforms and technologies such as
Eclipse, Web services, J2EE, and so on. The toolkit runtime architecture is
based on the J2EE architecture with extensions, and many development tools
the toolkit provides are Eclipse plug-ins.

Architecture
The architecture of the toolkit’s application is based on a logical three-tier model,
that is, back-end enterprise tier, application server tier, and client tier.

Within the application server tier, the toolkit has two separate layers. The
application presentation layer is responsible for receiving requests from the client
and passing that request to the application logic layer. It also passes the
response back to the client. The application logic layer is responsible for
performing the request as a process and passing the response back to the
application presentation layer.

In general, the application presentation layer resides in a Web container in
WebSphere Application Server, while the application logic layer resides in a EJB
container. The services are the exception because they can reside anywhere.

The design and portability of the toolkit allow the middle-tier servers to exist at
either the branch level, that is, one server per branch, the regional level, that is,
one server per group of branches, or even a centralized level, that is, a single
server for the entire financial institution. The design provides flexibility to achieve
the right balance between the number of servers and the network bandwidth,
without affecting any application logic. Besides the application server, there
might be a technical server responsible for providing common services such as
disks or printers to the client workstations. If the application presentation layer
and the application logic layer are on the same architectural level, they can
physically be on the same machine.

See Figure 8-44 on page 291.

290 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-44 Three-tier architecture

Client
A client in the three-tier architecture contains little logic. The logic it does have is
usually presentation logic or logic required locally to do such things as access

Client tier

BTT data
context

Java client

BTT panel (AWT)

Application server tier
Application presentation layer
(Web container)

EJB

Application logic layer
(EJB container)

EJB

Struts action

Struts action servlet &
request processor

View

Struts form

BTT data
context

EJB

WSIF/
EJB

BTT data
context

BTT EJB

Process Choreographer
Micro flow

BTT BTT data
context

BTT client side
micro flow

Services

WSIF

Invokers

WSIF/
EJB

Back-end enterprise tier

JDBC
database services

JCA resource
adapters

Data

WSIF

 Running H/F 1 291

financial devices or validate entered data. The code to execute the client logic is
downloaded on an on-demand basis, and therefore does not reside on the client,
but on a Web server. The Branch Transformation Toolkit supports any kind of
physical client device that uses the following technologies:

� JavaTM applets in a browser environment
� Java applications
� HTML clients

The toolkit provides implementations for current client technologies, but these
concrete implementations anticipate that significant differences might be found
when realizing solutions. The toolkit is not limited to these technologies because
its design is generic and can be extended to support other technologies.

A clear separation exists between Java clients and HTML clients. For a Java
client, the application, which can also be executed inside a browser, can be built
from toolkit-provided visual components that are implemented as Java beans,
using visual composition. The visual components of the toolkit and the interaction
with toolkit services facilitate the implementation of the required application tasks
such as interacting with financial devices, database access, and other services.
For an HTML client, the flow of the navigation is delegated to the server.

Application presentation layer
The application presentation layer works in conjunction with a system application
server such as IBM WebSphere Application Server to provide a layered multiple
channel architecture. The application presentation layer works as a bridge that
connects the clients with the application logic layer, which performs business
transactions. JavaTM clients and HTML clients use different application
presentation components to connect to the application logic layer.

To get connected with the application logic layer, the presentation layer defines
the following entities:

� Java RequestHandler processes a Java client request for a particular type of
requester. The toolkit registers these handlers to determine which specific
handler it needs for a specific request. For example, there are different
RequestHandlers for requests coming from a Java client in a home banking
environment, from a Java client in a branch teller environment, and from a
Java client in a call center environment. The RequestHandler is responsible
for interacting with the client side operations that controls the dialog
navigation for a specific client type and for interacting with invokers that call
application logic layer transactions.

� Java PresentationHandler processes the reply for a particular type of
requester.

292 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� Struts Extensions processes requests from HTML clients, calls application
logic layer components for business transactions, and renders presentation to
HTML clients based on the business transaction results.

To pass business process requests to the application logic layer, the application
presentation layer has the Bean Invoker Factory, which creates invokers, so that
the requester can invoke the EJBs that perform the business processes in the
application logic layer. The requester can be a request handler from the Java
client or an EJB Action from the toolkit Struts Extensions component.

Application logic layer
The application logic layer provides the core business logic using Enterprise
JavaBeansTM. It does this in a channel-neutral manner, that is, it handles a
transfer funds request, whether the request came from a Web client or a kiosk.

The mechanism for performing the business logic is a business process running
in the Process Choreographer in WebSphere Business Integration Server
Foundation or a business process running as a Single Action EJB. The business
process can involve interacting with Web services, host applications using the
JCA Connectors, and enterprise data sources to fulfill the request. The toolkit
provides a set of services that support the application logic layer by providing
connectivity to enterprise data stores or to existing systems.

If the application presentation layer and the application logic layer are both
running on WebSphere Business Integration Server Foundation, the
presentation layer can use a work area to pass the session IDs to the application
logic layer. Otherwise the application presentation layer includes the session ID
with the data required to process the business request in the request message.

Tiers and components
Branch Transformation Toolkit architecture consists of components, tiers or
logical subsystems, subsystems, and JavaTM packages, which can be used to
define, view, and package solution technologies. The solution development
process identifies the different parts of the architecture. For example, the
requirements phase identifies components, the analysis phase identifies tiers
and logical subsystems, and the design and coding phases identify physical
subsystems and Java packages. Identifying these items during development
ensures that the system structure is consistent and has integrity.

� Components: These are the building blocks of toolkit-based solutions. They
are relatively independent and discrete parts that satisfy specific business or
technical functions. Components have public interfaces that allow their
functionality and implementation to evolve over time, and independent of the
rest of the solution. To a certain degree, a toolkit-based solution is a group of
reusable components, and the current deployed toolkit solutions are

 Running H/F 1 293

reference configurations about how to combine components to solve a
technology problem for a customer channel.

� Tiers (Logical subsystems): These are the analytical building blocks of
toolkit-based solutions. They represent a partitioning of the system that is
independent of the technology and physical implementation. The Branch
Transformation Toolkit tiers map to the J2EE solution architecture.

� Subsystems: These represent its physical partitioning for deployment and
execution. This is different from tiers, which represents the logical partitions of
a toolkit solution. A subsystem is a physically independent part of the system,
and therefore, can be run on any computer within the system. A subsystem
can be seen as a subset of components inside a domain.

� Java packages: Also called just packages, these elements are the way a
toolkit-based solution delivers code. Packages provide a way of grouping
functionality for a set of related classes. They define the namespace of a
class and follow a naming convention that commonly maps to domains and
subsystems. The naming convention used by the Branch Transformation
Toolkit is as follows:

– com.ibm.dse.domainName.subsystemName.furtherPackages.Class
– com.ibm.btt.domainName.subsystemName.furtherPackages.Class

The "tierName" and "subsystemName" portions of the naming convention are
determined by the system architect. The "furtherPackages" portion is for
grouping classes into more discrete functional groups within a subsystem,
and is determined by the subsystem designer.

Java client components in the client tier
The JavaTM client components in the client tier of the J2EE architecture provides
the entities for developing the Java client side of an application. These
components control the user interface of the Java client, gather data from the
user, send requests to the application presentation tier, and receive response
from the application presentation tier.

The toolkit architecture allows the externalization of most of these entities,
thereby separating data for a specific client operation from the Java code. This
reduces coding effort, which facilitates application development, enhancement,
and maintenance.

See Figure 8-45 on page 295.

294 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-45 The component view of a Branch Transformation Toolkit application

Components in the application server tier
The Branch Transformation Toolkit components that run on application servers
can be divided into two categories, that is, components running in the Web
container of the application server and components running in the EJB container
of the application server. The Web container and the EJB container share some
toolkit components. These components are needed both by the application
presentation components for handling requests from clients and by the
application logic components for doing business transactions. The shared
components consist of the following:

� Data elements and typed data

These elements are similar to those running on the JavaTM client. Data
elements and typed data elements provide a mechanism for managing data
used throughout a transaction.

� CHA and CHA Formatter Service

The CHA and CHA Formatter Service supports other components in the Web
container and EJB container by providing a distributed data structure and
mechanism to import and export data into the structure. The CHA uses the
contexts, data elements, and typed data elements.

Java client
technology

Web client
technology

HTML Browser

Bean invokerJava
request
handler

Java
presentation

handler

Pool

InvokerInvokerInvoker

Cache

InvokerInvokerBean
proxy

Session
info.

Data
context

C/S messaging APIs

Struts Extension

JSP

JSP

JSPJSP

Session
info.

Data
context

HTML screen flow

Presentation logic

BTT extension – Micro flow
Data

context

Business process

Data
context

Single action EJB
(non-flow base logic)

Business and integration logic

Event
mechanism

Formatter

CHA

Services

Database
service

JCA
Lu)/Lu62

Event
manager

Work
area

WebSphere Application Server

IIO
B or W

S D
L/W

S F

Database server

EIS

 Running H/F 1 295

� Events, externalizers, and exceptions

These components work in the same way as their counterparts running on the
Java client.

� Trace facility

The trace facility provides a class that keeps information in memory and
records information on disk.

Application presentation components in the Web container
The application presentation components in the Web container provide the main
entities for developing the application presentation layer part of an application.
These components control the user interface of HTML clients, gather data from
HTML clients, and launch the business processes performed in the application
logic layer. This group includes the client/server connectivity components that
provide multichannel support connectivity between various client devices and the
application presentation layer.

� Invokers

Instantiated by the Bean Invoker Factory, invokers enable Struts actions or
JavaTM request handlers to access the business processes and Single Action
EJBs through an EJB call.

When a request comes from a requester (a request handler or a Struts
action), the request brings a request ID and a session ID to the Bean Invoker
Factory. The request ID indicates what kind of transaction the client is
requesting, and the session ID identifies the session of this transaction
request. The Bean Invoker Factory generates or allocates an invoker with the
request ID and session ID. The Bean Invoker Factory then returns the invoker
to the requester so that the requester can send the request to the application
logic layer.

� Java Client/Server Messaging APIs

The JavaTM Client/Server Messaging APIs component is an implementation
of multichannel support that allows the creation of distributed Java
applications - not just distributed data but also distributed logic - using Internet
technologies. The Java Client/Server Messaging APIs is based on the HTTP
protocol, but adds the concept of a session between the client and the server.
The Java Connector supports session clustering, load balancing, and a
network dispatcher so that an application can be distributed among several
servers.

Furthermore, the Java Client/Server Messaging APIs component allows a
kind of dynamic application topology reconfiguration, which means that at any
point in time, the server executing the logic can be changed. A request from a
toolkit client implies the execution of a business process or activity in the
application logic layer. The request contains the name of the process or

296 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

activity to execute, along with relevant data for unformatting into the process
context. However, it does not specify where to execute the process or activity.

The Java Client/Server Messaging APIs component can use the SSL protocol
capabilities, allowing secure information interchange between the client side
and the server side of a toolkit-based system. The capability is particularly
useful when information is flowing through non-trustworthy networks. The
toolkit can use up to 1024-bit RSA for key exchange and 128-bit symmetric
encryption of data.

� Struts Extensions

The toolkit’s Struts Extensions enables HTML clients to send requests to and
receive responses from a toolkit application using the HTTP protocol. The
Struts Extensions provide additional functionalities such as handling the back
button in the browser, duplicating requests, NLS, validation, and error
handling.

� JavaServer Pages

JavaServer Pages (JSPs) are used to dynamically construct HTML pages
requested by a client Web browser. Any HTML page can contain URL links
that cause a JSP to be rendered and returned to the HTML browser. JSP tags
render HTML contents based on the attributes of the tag and dynamic
information obtained from the context.

Based on the Apache Struts Framework, the Branch Transformation Toolkit
provides custom JSP tags and utility beans to enable applications to retrieve
information from the context hierarchy, get resources, and handle errors. If
your application requires additional behavior, you can build new tags using
the StrutsJspContextServices interface.

Application logic components in the EJB container
The application logic components residing in the EJB container support the
execution of business logic.

� Business Process Component

The Business Process Component provides supporting entities so that an
application can run a business process within the Process Choreographer of
WebSphere(R) Business Integration Server Foundation.

� Single Action EJB

As an alternative to the Process Choreographer, an application can use a
Single Action EJB to perform the business process. A Single Action EJB may
or may not use the CHA and CHA Formatter Service.

� Startup beans

The application logic domain uses startup beans to initialize the application
logic layer entities.

 Running H/F 1 297

� Communication services

Communication services provide connectivity to the existing data and
applications in the enterprise systems. These services isolate the client
application from the communications complexity by providing a clear and
easy public interface. The SNA JCA LU0 Connector and the SNA JCA LU62
Connector are resource adapters that enable business processes.

� JDBC Database services

The JDBC Database services of the Branch Transformation Toolkit interact
with a database through the JDBC protocol to provide access to database
tables. The services also map context data to database records and database
records to context data using a formatter. The Database Table Mapping
service enables toolkit applications to access databases using a common
interface. The Electric Journal service can record the services and processes
used or performed by an entity such as a branch, user, or terminal. The
design of each application determines what information the service records,
as well as when it writes that information.

� Generic Pool

The Generic Pool service in the application logic layer performs the same
function as it does in the JavaTM clients and Web Container.

8.3.6 Setting up CHA and formatter services
The Branch Transformation Toolkit application consists of numerous
components. A toolkit application is developed by composing all the required
components. The CHA and Formatter services are the core components in a
toolkit application. This section describes the process involved in adding these
two components into the sample application.

Adding the CHA service
Now that the definitions of the CHA data and the CHA context is complete, you
can move further. The Branch Transformation Toolkit provides the BTTCHAEJB
EJB module, which converts these definitions into live objects in the runtime. You
should now import the CHA EJB module.

Removing invalid EJB modules
Before importing the CHA EJB module, remove the three invalid EJB modules
created by BTT Project wizard by performing the following tasks:

1. Expand the BTTBank project and open the deployment descriptor
(application.xml) stored in the META-INF directory.

298 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. Click the Module tab, select EJB BTTFormatterEJB.jar, EJB
bttsvcinfra.jar, and EJB BTTCHAEJB.jar, and click Remove, as shown in
Figure 8-46.

Figure 8-46 Remove unused EJB modules

3. Press Ctrl+S to save the change.

Import BTTCHAEJB.jar
To import the CHA EJB JAR file, perform the following steps:

1. Open the J2EE perspective, and select File → Import from the menu bar.

2. In the Import dialog box, select EJB JAR file and click Next.

3. Enter the following values for the EJB import:

– EJB JAR File: <BTT_install_dir>\jars\BTTCHAEJB.jar
– EJB project: BTTCHAEJB
– EAR project: BTTBank

4. Click Finish.

Set up project properties
To set up the project properties, follow these steps:

1. Switch to the Project Navigator view. The BTTCHAEJB EJB Project
appears. You will see that it has some errors.

2. Right-click the BTTCHAEJB project, and select Properties from the context
menu.

3. In the pop-up window, select Java Build Path, and then click the Libraries
tab.

 Running H/F 1 299

4. Click Add Variable. In the New Variable Classpath Entry pop-up window,
select WAS_EE_V51 and click Extend, as shown in Figure 8-47.

Figure 8-47 Extend the variable WAS_EE_V51 to add a jar file

5. In the Variable Extension pop-up window, select lib/startupbean.jar, and
click OK, as shown in Figure 8-48.

Figure 8-48 Add lib/startupbean.jar to the build path

300 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

6. Again, in the Libraries page, click Add JARs. Select bttbase.jar from the
BTTBank project, then click OK, as shown in Figure 8-49.

Figure 8-49 Add bttbase.jar into the build path

7. Click OK again in the BTTCHAEJB Properties window. The WebSphere
Studio Application Developer Integration Edition will rebuild the project
automatically. In addition, all the errors will be fixed.

Generating EJB to RDB mapping
To generate the EJB to RDB mapping, follow these steps:

1. Right-click BTTCHAEJB project, select Generate → EJB to RDB Mapping
from the context menu, as shown in Figure 8-50.

Figure 8-50 Select Generate → EJB to RDB Mapping

Note: If WebSphere Studio Application Developer Integration Edition 5.1.1
does not rebuild the project automatically, select the project, and then
select Project → Rebuild Project from the menu bar.

 Running H/F 1 301

2. Select Create a new back-end folder, and click Next.

3. Select Top Down, and click Next.

4. Enter the following values for the Top Down Mapping Options, as shown in
Figure 8-51:

– Target Database: DB2 Universal Database V8.1
– Database name: BTTBank
– Schema name: DB2ADMIN.

Uncheck the check box against Generate DDL, and click Finish.

Figure 8-51 Specify top-down mapping options

302 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Generating Deployment and RMIC Code
To generate the deplyment and RMIC code, follow these steps:

1. Right-click BTTCHAEJB project, and select Generate → Deployment and
RMIC Code from the context menu, as shown in Figure 8-52.

Figure 8-52 Select Generate → Deployment and RMIC Code

2. Click Select all in the pop-up window, and click Finish, as shown in
Figure 8-53.

Figure 8-53 Generate Deployment and RMIC Code for all enterprise beans

Adding the CHA Formatter service
The Branch Transformation Toolkit v5.1 also provides the BTTFormatterEJB
EJB module, which converts the defined formats into live objects in the runtime.

 Running H/F 1 303

Before deploying CHA Formatter Service, ensure that the CHA environment is
ready in the workspace.

Importing BTTFormatterEJB.jar

To import the BTTFormatterEJB.jar, follow these steps:

1. Open the J2EE perspective and get into the J2EE Hierarchy view.

2. Right-click BTTBank in the Enterprise Applications folder. Select Import →
Import EJB Jar.

3. Enter the following values for the EJB import:

– EJB JAR File: <BTT_install_dir>\jars\BTTFormatterEJB.jar
– EJB project: BTTFormatterEJB
– EAR project: BTTBank

4. Click Finish.

Setting up project properties
To set up the project properties, follow these steps:

1. Switch to the Project Navigator view. The BTTFormatterEJB EJB Project
appears.

2. Right-click the BTTFormatterEJB project, and select Properties from the
context menu.

304 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3. In the pop-up window, select Java JAR Dependencies. Select the Use EJB
JARs option, and then check bttbase.jar and bttfmt.jar in the JAR/Module
list. Click OK, as shown in Figure 8-54.

Figure 8-54 Set up Java JAR dependencies for BTTFormatterEJB

Generating Deployment and RMIC code
To generate the deployment and RMIC code, follow these steps:

1. Right-click the BTTFormatterEJB project and select Generate →
Deployment and RMIC Code.

 Running H/F 1 305

2. In the pop-up dialog box, click Select all and Finish, as shown in Figure 8-55.

Figure 8-55 Generate Deployment and RMIC Code for BTTFormatterEJB

Defining proxy in client side dse.ini
This section describes how to define CHA formatter service proxy in client side
dse.ini. The CHA formatter service has four proxies. In our sample, we used
PureEJBProxy. To define CHA formatter service proxy in client side dse.ini,
perform the following steps:

1. Open BTTBankBusiness.chae by double-clicking the file in BTTBankBTT
project.

2. Click the dse.ini tab, locate the keyed collection definition with the ID
cha-server. Add the following keyed collection definition shown in
Example 8-5 after it.

Example 8-5 Configuring PureEJBProxy for CHA formatter service

<kColl id="CHAFormatterServiceClient">
<field id="CHAFormatterServiceProxyClass"

 value="com.ibm.btt.formatter.client.CHAFormatterServicePureEJBProxy"/>
<field id="PureEJBProxy_initialContextFactory"

306 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

 value="com.ibm.websphere.naming.WsnInitialContextFactory"/>
<field id="PureEJBProxy_jndiName"

 value="com/ibm/btt/formatter/server/CHAFormatterServiceServiceHome"/>
<field id="PureEJBProxy_providerURL" value="iiop://localhost:2809/"/>

</kColl>

3. Press Ctrl+S to save it.

8.3.7 Creating a Single Action EJB
This section describes the creation of Single Action EJB as the withdrawal
business operation. In the toolkit’s architecture, the Single Action EJB is a little
different from pure EJB in J2EE. The Single Action EJB’s main function is like an
Decorator or an Adapter. Single Action EJB is used to wrap the operation
provided by the back-end host. It can include journaling or message
transformation services as well. Thus, Single Action EJB should not handle data
persistence as per the toolkit design. The table and journal services are better
candidates for this purpose.

Client operation, invoker, and server SAE strategy
This section looks at how invokers and server Single Action EJB work with client
operation.

In a client/server environment, a business operation is composed of a flow being
executed in three phases, that is, a client operation, an Invoker, and a Single
Action EJB, as shown in Figure 8-56.

Figure 8-56 Components joined in the client/server communication

The client operation must know the name of the corresponding Invoker. This
should be stored as an attribute of client operation, as shown in Figure 8-57.

Figure 8-57 Client 0peration should know information about the Bean Invoker

Client Operation Bean Invoker Single Action EJB

Client Operation
• Bean Invoker

Bean Invoker Single Action EJB

 Running H/F 1 307

Each operation needs a set of data. Data elements are stored as collections
inside the context hierarchy. By simply passing the operation and the name of a
context, the operation can access the data of the entire context hierarchy. See
Figure 8-58.

Figure 8-58 Client operation and SAE have knowledge of underlying contexts

You should now let both ends communicate with each other. The Branch
Transformation Toolkit provides the Client/Server Communication Service for
this purpose. The Client/Server Communication Service requires two specific
message formats to work correctly. To send a request message from Client
Operation, the csRequestFormat will be used. Likewise, it uses csReplyFormat
to reply back to the client.

Thus, the scenario of the overall operation can be as follows:

Using the Client/Server Communication service, the client will prepare and send
a request message to the server for processing. The server will process the
operation, produce a reply, and send that reply back to the client. See
Figure 8-59.

Figure 8-59 The scenario of client/server communication service

Client Operation
• Bean Invoker
• Context

Bean Invoker
Single Action EJB
• CHA

SystemData
• sessionID
• subSessionId
• InstanceId

Client Operation
• Bean Invoker
• Context

Client/Server
communication

Bean Invoker

Single Action EJB
• CHA

csRequestFormat

csReplyFormat

308 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The Client/Server Communication service relies on three key configuration files
to work correctly, that is, client operation definition, server operation definition,
and bean invoker registry mapper.

� Client operation definition

There are two types of clients, a Java client and a Web client. For Java client,
the client operation definition typically resides in dseoper.xml. Use
Example 8-6 to define a client operation.

Example 8-6 Client operation definition for Java client

<ClientOperation id="clientOp" serverOperation="serverOp"
 context="clientCtx">

<refFormat name="csRequestFormat" refId="clientRequestFmt"/>
</ClientOperation>

For a Web client, the client operation definition resides in the configuration file
of a Struts Module in bold font, as shown in Example 8-7.

Example 8-7 Client operation definition for Web client

<?xml version="1.0" encoding="ISO-8859-1" ?>
<struts-config>

<data-sources />
<form-beans>
 <form-bean name="signInForm"

 type="btt.bank.ui.struts.forms.SignInForm"/>
</form-beans>
<global-exceptions />
<global-forwards />
<action-mappings>

<action name="signInForm"
 path="/signIn"
 className="com.ibm.btt.struts.config.BTTEJBActionMapping"
 type="com.ibm.btt.struts.actions.EJBSignInAction"
 input="/signin.jsp"
 invokerId="signInInvoker"
 validator="btt.bank.ui.struts.forms.SignInXVal"
 validate="true"
 parameter="signIn">

<forward name="success" contextRelative="true"
path="/btt/bank/ui/struts/withdrawal/prepareWithdrawal.do"/>

<forward name="signin" path="/signin.jsp"/>
</action>

</action-mappings>
<flowcontext contextName="signInCtx" local="true" />
<plug-in className="com.ibm.btt.struts.plugins.BTTDefaultNotifier" />
<finals>
 <final type="forward"

 Running H/F 1 309

name="/btt/bank/ui/struts/withdrawal/prepareWithdrawal.do"/>
</finals>

</struts-config>

� Server operation definition

The server operation definition is used by invokers to invoke server side
Single Action EJBs/Business Processes. In our sample, we named this file
serverOp.properties and placed it in the serverOp.invoker.java package.
The sample content of the file will be as shown in Example 8-8.

Example 8-8 Server operation definition

implClass=serverOp.invoker.java.ServerOpInvoker
jndiName=ejb/server/ServerOpHome
factory=com.ibm.websphere.naming.WsnInitialContextFactory
location=iiop://localhost:2809
homeClassName=server.ServerOpHome
isLocal=false
csReplyFormat=clientReplyFormat

� Bean Invoker Registry Mapper

You now have the client and server operation definition. The Bean Invoker
Registry Mapper defines the mapping between serverOperation/invokerId
and the server operation definition file. The sample could be as follows:

serverOp=serverOp.invoker.java.serverOp:RB

The BeanInvokerRegistry.properties resides in the
com.ibm.btt.cs.invoker.base package.

Because it has the serverOperation/invokerId attribute, the Client/Server
Communication service will know which corresponding invoker to instantiate and
run. Further, because each client has a unique session ID, the service will know
to which client the server's reply will be passed.

The client/server mechanism is as follows:

1. In the client, use the format identified as csRequestFormat to format the
request data.

2. In the server, the client/server communication mechanism refers to the file
com.ibm.btt.cs.invoker.base.BeanInvokerRegistryMapper.properties. Use the
key identified by the client operation's serverOperation attribute or invokerId
to find the corresponding properties file and then instantiate the invoker
defined in the properties file.

3. The mechanism then uses the invoker’s parseRequestData method to
unformat the request data for the Single Action EJB. The corresponding
Single Action EJB should have the method to accept the request data.

310 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

4. Trigger the invoker to execute the Single Action EJB.

5. In the server, it uses the invoker’s processRespondData method to format the
reply data.

6. The client unformats the reply data using the csReplyFormat and saves the
data to the client operation context.

Creating the withdrawal Single Action EJB
This section describes how to build the withdrawal Single Action EJB as one of
the business logic in our application. It is elementary, with little functionality. It
simply returns hard-coded data in a reply to the client. The main purpose is to
test the overall flow in the client/server environment.

To create a Single Action EJB, follow these steps:

1. Open WebSphere Studio Application Developer Integration Edition. In J2EE
perspective, select the BTTBank project in Project Navigator view. Right-click
it and select Import from the context menu.

2. In the Import pop-up window, select File system as the import source, and
then click Next.

 Running H/F 1 311

3. In the next page, click Browse and navigate to <BTT_install_dir>/jars. Click
OK. Select bttinvoker.jar, and then click Finish, as shown in Figure 8-60.

Figure 8-60 Import bttinvoker.jar into the BTTBank project

Importing the prebuilt project
The sample Java code used in this chapter is provided in the \7160code\chap8
directory of our redbook sample code. Refer to Appendix C, “Additional material”
on page 505 for instructions on how to install the sample code in your computer.
To import the prebuilt project, perform the following tasks:

1. Right-click the BTTBankEJB project. Select Import from the context menu.
Use zip file as the import source, and then click Next.

312 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. In the next window, browse to the c:\7160code\chap8 folder and select
BTTBankEJB.zip. Click Finish, as shown in Figure 8-61.

Figure 8-61 Import the prebuilt project

3. You can see a pop-up window asking you to confirm the overwrite. Click Yes
To All.

4. Select Project → Rebuild Project from the main menu to fix the errors.

Creating the WithdrawalServerOp session bean
1. In the J2EE perspective, switch to the Project Navigator view. Open the EJB

Deployment Descriptor in the BTTBankEJB project.

2. Select the Beans tab and click Add to add an EJB.

 Running H/F 1 313

3. Enter the following properties to create the WithdrawalServerOp session
bean, as shown in Figure 8-62:

– Bean Type: Session Bean
– EJB project: BTTBankEJB
– Bean name: WithdrawalServerOp
– Source folder: ejbModule
– Default package: btt.bank.business.logic

4. Click Next. See Figure 8-62

Figure 8-62 Properties for the WithdrawalServerOp EJB

5. In the Enterprise Bean Details page, accept the default values and click Next.

314 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

6. In the next dialog box, use com.ibm.btt.server.bean.StatelessSingleAction
as the superclass of this EJB, as shown in Figure 8-63, and click Finish.

Figure 8-63 Use com.ibm.btt.server.bean.StatelessSingleAction as the superclass

 Running H/F 1 315

Configuring WithdrawalServerOp session bean
1. In the EJB JAR Descriptor Editor, click the Beans tab, select

WithdrawalServerOp from the EJB list and add the items shown in Table 8-3
to the Environment Variables section:

Table 8-3 Environment variables for WithdrawalServerOp session bean

2. Save and close the EJB JAR Descriptor Editor.

Modifying source code
To modify the stateless session bean WithdrawalServerOpBean, perform the
following tasks:

1. In the EJB Projects BTTBankEJB, expand the folder
ejbModule/btt.bank.business.logic.

2. Double-click WithdrawalServerOpBean.java.

3. Add the import statements from Example 8-9 to the existing import
statements.

Example 8-9 Additional import statements for WithdrawalServerOpBean.java

import java.util.Date;
import java.util.Hashtable;
import com.ibm.btt.base.BTTSystemData;
import com.ibm.btt.base.Context;
import com.ibm.btt.formatter.client.FormatElement;
import com.ibm.btt.server.bean.BTTSAEException;

4. Change the ejbCreate and ejbRemove methods to look as shown in bold in
Example 8-10.

Example 8-10 Modified ejbCreate and ejbRemove methods

/**
 * ejbCreate
 */
public void ejbCreate() throws BTTSAEException {

Name Description Type Value

ID String WithdrawalServerOp

sessionCtxName String javaSessionCtx

dseIniPath String c:\\dse\\dse.ini

context String withdrawalServerCtx

contextMode String remote

316 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

super.ejbCreate();
}

/**
 * ejbRemove
 */
public void ejbRemove() {

super.ejbRemove();
}

5. Implement the execute method as shown in Example 8-11. The execute
method is divided into three main sections:

– The first section deals with context hierarchy.

– The second section sees the update of the context data with the request
data.

– The third section provides hard-coded data as the response to this
operation.

– The final part is the error handler.

Example 8-11 Execute method for the WithdrawalServerOpBean

public Hashtable execute(BTTSystemData sysData, Hashtable reqData)
 throws Exception {

Hashtable result = null;
try {

// initialize context hierarchy
initialize(sysData);
Context SAEContext = getContext();
if (SAEContext.getParent() == null) {

Context parent = Context.getContextByInstanceID(getInstanceId());
SAEContext.chainTo(parent);

}
// set request data to withdrawalServerCtx
SAEContext.setValueAt("BranchId", (String)reqData.get("BranchId"));
SAEContext.setValueAt("AccountNumber",

 (String)reqData.get("AccountNumber"));
SAEContext.setValueAt("Date", (Date)reqData.get("Date"));
SAEContext.setValueAt("Amount", (Float)reqData.get("Amount"));
System.out.println("withdrawalServerOp SAE context:\n" +

 SAEContext.getKeyedCollection());
// set hard-coded response data to withdrawalServerCtx
SAEContext.setValueAt("TrxReplyCode", "00");
SAEContext.setValueAt("AccountBalance", "10000");
SAEContext.setValueAt("TrxErrorMessage", "withdrawalOK");
result = ((FormatElement)getFormat("afterRecJournalFmt"))

 .formatHashtable(SAEContext);
}

 Running H/F 1 317

catch (Exception e) {
e.printStackTrace();
throw e;

}
return result;

}

6. Save your changes and close the Source Editor.

To modify the EJB home interface WithdrawalServerOpHome, perform the
following tasks:

1. Double-click WithdrawalServerOpHome.java.

2. Change the Home interface to that shown in Example 8-12.

Example 8-12 Modified WithdrawalServerOpHome interface

package btt.bank.business.logic;

import com.ibm.btt.server.bean.BTTSAEException;

/**
 * Home interface for Enterprise Bean: WithdrawalServerOp
 */
public interface WithdrawalServerOpHome extends javax.ejb.EJBHome {

/**
 * Creates a default instance of Session Bean: WithdrawalServerOp
 */
public btt.bank.business.logic.WithdrawalServerOp create()

 throws javax.ejb.CreateException, java.rmi.RemoteException,
 BTTSAEException;
}

3. Save your changes and close the source editor.

To modify the EJB remote interface WithdrawalServerOp, perform the following
tasks:

1. Double-click WithdrawalServerOp.java.

2. Change the remote interface as shown in Example 8-13.

Example 8-13 Modified WithdrawalServerOp interface

package btt.bank.business.logic;

import java.rmi.RemoteException;
import java.util.Hashtable;
import com.ibm.btt.base.BTTSystemData;
import com.ibm.btt.server.bean.BTTSAEException;

318 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

/**
 * Remote interface for Enterprise Bean: WithdrawalServerOp
 */
public interface WithdrawalServerOp extends javax.ejb.EJBObject {

public Hashtable execute(BTTSystemData sysData, Hashtable reqData)
 throws Exception;

}

3. Press Ctrl+S to save the changes.

Generating Deployment and RMIC Code
To generate the deplyment and RMIC code, follow these steps:

1. Right-click the BTTBankEJB project and select Generate → Deployment
and RMIC Code.

2. In the pop-up dialog box, click Select all and then Finish, as shown in
Figure 8-64.

Figure 8-64 Generate Deployment and RMIC Code for the BTTBankEJB project

 Running H/F 1 319

8.3.8 Developing the Web facade with Struts Tools BTT Extensions
Struts is a Model-View-Controller implementation that uses servlets and
JavaServer Pages (JSP) technology. It is a set of cooperating classes, servlets,
and JSP tags that make up a reusable MVC 2 design. Struts also contains an
extensive tag library and utility classes that work independently of the framework.

A Struts configuration file is an XML document that describes all or part of a
Struts application. Because the toolkit Struts Extensions component provides
customization to the Apache Struts Framework, some settings in extended Struts
configuration files are hidden from the Struts Configuration File Editor provided
by WebSphere Studio Application Developer, which is a standard Struts
configuration file editor.

The Struts Tools BTT Extensions is a WebSphere Studio Application Developer
plug-in with which you can modify Struts configuration files to include specific
settings for the toolkit’s Struts Extensions. The Struts Tools BTT Extensions has
a friendly user interface that saves you from editing the XML source of Struts
configuration files directly.

This section describes how to import a prebuilt project that includes some
skeleton code to simplify the development effort. It then takes you through a
typical Struts development. You can use the features provided by Struts Tools
BTT Extensions to configure the settings. Thus, the BTT Struts component and
the invoker can work together to access the logic/flow provided by the business
layer.

Importing the prebuilt project
To import the prebuilt project that includes some skeleton code into the
BTTBankWeb project, following these instructions:

1. Right-click the BTTBankWeb project. Select Import from the context menu.
Use zip file as the import source, and click Next.

2. In the next window, browse to the c:\7160code\chap8 folder and select
BTTBankWeb.zip. Click Finish.

3. You will see a pop-up window asking for confirmation to overwrite. Click Yes
To All.

4. Right-click the BTTBankWeb project, and select Rebuild Project to fix some
warnings.

5. Navigate to the BTTBankWeb/WebContent/WEB-INF folder, and
double-click web.xml to open it.

320 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

6. Click the Environment tab, and then Add to add a variable named
dseIniPath. Enter the following values as it properties, as shown in
Figure 8-65:

– Type: String
– Value: c:\\dse\\dse.ini

Figure 8-65 Add the dseIniPath variable

7. Press Ctrl+S to save your work.

Creating Struts module for withdrawal operation
To create the Struts module, follow these steps:

1. Select File → New → Other from the main menu.

2. Select Web → Struts in the left panel of the New dialog box.

3. Select Struts Module in the right panel and click Next.

 Running H/F 1 321

4. Enter the following values for the Struts module, as shown in Figure 8-66, and
click Finish:

– Project name: BTTBankWeb
– Module name: btt/bank/ui/struts/withdrawal
– Struts configuration file: WEB-INF/struts-btt-withdrawal.xml
– Package: btt.bank.ui.struts.withdrawal.resources

Figure 8-66 Create the btt/bank/ui/struts/withdrawal module

Note: Check the Override default settings option to change the values of
both the Struts configuration file and the Package.

322 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Designing the Struts Web application using top-down
approach

In this section, use Web diagram to lay out the design of the Web application. A
Web diagram is a file that helps you visualize the application flow of a
Struts-based Web application. As a result of the levels of indirection involved in a
Struts application, being able to visually see the application's flow can help you
understand the application better.

Creating a Web diagram for newly created Struts module
To create a Web diagram, perform the following tasks:

1. Select File → New → Other from the main menu.

2. Select Web → Struts in the left panel of the New dialog.

3. Select Web Diagram in the right panel and click Next.

 Running H/F 1 323

4. Enter the following values for the Web diagram, as shown in Figure 8-67, and
click Finish:

– Folder: /BTTBankWeb

– File Name: withdrawal

– Module: /btt/bank/ui/struts/withdrawal

Figure 8-67 Create a new Web diagram

The Web diagram editor should be open, as shown in Figure 8-67. This figure
contains a palette for Web diagram editor. It contains Select, Connection, Note

324 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

icons, and Struts tools drawer with Action Mapping, Form Bean, Java Bean, Web
Page, Web Application, and Struts Module icons.

Figure 8-68 Web diagram with the struts drawer open in the palette

Adding the Web components
Use the icons in the palette to add two actions, two Web pages, and a form bean
on the empty surface:

1. When you drop an action, you can change its name to the name shown in
Figure 8-69.

Figure 8-69 Web diagram with initial components

 Running H/F 1 325

2. When you drop a JSP page, you should change its name to the name shown
not only in the figure, but prepend the module name as well. For example, use
/btt/bank/ui/struts/withdrawal/withdrawal.jsp instead of
withdrawal.jsp.

3. When you drop a form bean, you are prompted for a name and scope. Enter
withdrawalForm as name and select request as scope.

Components in gray are not yet implemented, meaning they are only available in
the Web diagram and not as an underlying file such as a Java class or JSP.

Designing the application flow
When the components are laid out, connect them to define the flow of the
application. Figure 8-70 on page 327 shows the layout with connections.

1. Create a connection from withdrawal.jsp to /withdraw action.

This should be done to indicate the action that will be invoked when the form
is submitted.

Select Connection from the palette, click withdrawal.jsp, and drag the
connection to the /withdraw action.

2. Create a local forward back to withdrawal.jsp.

This will be used to forward the user back to the log in page when business
exceptions occur in the log in action.

a. Select Connection, click the /withdraw action, and drag it back to
withdrawal.jsp.

b. Rename the forward to failure and press Enter.

3. Create a local forward to the result.jsp.

a. Select Connection, click the /withdraw action, and drag it to result.jsp.

Note: You should add /prepareWithdrawal action because you are using
Struts modules. If you do not have these prepare actions, and you go to the
JSP pages directly, the subsequent submit action /withdraw cannot be found
by the Struts framework. The root cause is that the Struts framework would
not have initialized the struts-btt-withdrawal.xml module. Thus, before going to
withdrawal.jsp by selecting the /prepareWithdrawal action, Struts framework
can initialize the withdrawal Struts module. Then, the submission from
withdrawal.jsp can correctly direct to the /withdraw action in the
struts-btt-withdrawal.xml module.

326 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

b. Rename the forward to success and press Enter.

You will see a dotted arrow line from the /withdraw action to the result.jsp
page, as shown in Figure 8-70.

4. Associate the /withdraw action with the withdrawalForm form bean.

a. To create a connection, select the Connection icon from the Palette.

b. Single click the /withdraw action, and drag and drop the connection into
the withdrawalForm.

You will see a dotted arrow line from /withdraw action to the
withdrawalForm form bean as shown in Figure 8-70.

Figure 8-70 Web diagram with components connected

5. Save the Web diagram by pressing Ctrl+S.

Implementing the Struts Web diagram
Branch Transformation Toolkit Struts Extension includes BTTEJBActionMapping
and EJBAction Java classes that handle the connectivity between Struts Action
Mappings and Branch Transformation Toolkit Invokers. We use the built-in
EJBAction.

Thus, before actually starting, change the way the WebSphere Studio
Application Developer Integration Edition v5.1.1 realizes an action mapping,
when double-clicking the icon. Follow these instructions to make the change:

1. Select Window → Preferences from the main menu bar.

2. Expand Web Tools → Struts Tools, and then select Web Diagram Editor in
the left panel of the Preferences window.

 Running H/F 1 327

3. Select the Invoke Struts Configuration File Editor option as the Preferred
action used when double-clicking an unrealized action mapping as shown in
Figure 8-71.

Figure 8-71 Use Struts Configuration File Editor to realize action mappings

After this change, you should consider the order of the component realization.
When the Web diagram is laid out, start implementing the components. This can
be done in different orders, and the support you get from the Struts tools
depends on the order you choose:

� You can implement the form beans first. When you later implement the JSPs,
you can choose which fields from the form beans that should be present on
the pages.

328 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� You can implement the JSPs first. When you later implement the form beans ,
you can choose which fields from the JSP pages should be added to the form
beans as properties.

In our sample, we chose to implement the form beans first to have full control
over their contents and structure.

Developing a form bean
Implement the withdrawalForm form bean by performing the following tasks:

1. Double-click the withdrawalForm form bean in the Web diagram.

2. The New Form Bean dialog should be displayed with all the fields populated
by default. Ensure that the Create New ActionForm class or Struts
dynamform using DynaActionForm radio button is selected, and Generic

 Running H/F 1 329

Form-Bean Mapping is selected in the Model field. Accept the default, as
shown in Figure 8-72, and click Next.

Figure 8-72 Realize Struts components - Withdrawal Form Bean - Bean information

3. When the Choose New Fields dialog box opens, you can choose an existing
Form in a HTML/JSP file and add it to the form bean directly. However,
because you have not realized the withdrawal.jsp yet, skip this and create the
fields directly in the bean. Click Next.

330 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

4. When the Create New Fields dialog box opens, follow these steps:

a. Click Add.

b. Enter the fields shown in Table 8-4:

Table 8-4 Fields added to the withdrawalForm

Name Type

Date String

AccountNumber String

Amount String

TrxErrorMessage String

AccountBalance String

TrxReplyCode String

 Running H/F 1 331

c. When complete, the dialog box should look as shown in Figure 8-73. Click
Next to continue.

Figure 8-73 Realize Struts components - Withdrawal Form Bean - Create new fields

332 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5. When the Create Mapping for the ActionForm class dialog box opens, enter
the following information, as shown in Figure 8-74, and then click Finish:

– Java package: btt.bank.ui.struts.forms
– ActionForm class name: WithdrawalForm
– Superclass: com.ibm.btt.struts.base.BTTActionForm

Figure 8-74 Create a mapping for ActionForm class

The following actions have been completed by the wizard:

� A class WithdrawalForm has been created in the package
btt.bank.ui.struts.forms.

 Running H/F 1 333

� The Struts configuration file struts-btt-withdrawal.xml has been updated with
the form bean information, as shown in Example 8-14.

Example 8-14 Struts configuration file struts-btt-withdrawal.xml snippet

<!-- Form Beans -->
<form-beans>

<form-bean name="withdrawalForm" type="btt.bank.ui.struts.forms.WithdrawalForm">
</form-bean>

</form-beans>

Now that the Web diagram is updated, you can see that the form bean appears
in the diagram and that the color has changed. The color change in Figure 8-75
for the withdrawalForm denotes that the Struts component has been realized.

Figure 8-75 Realize Struts components - Withdrawal form bean realized

Creating the corresponding validator
To create the validator that works with BTTActionForm, perform the following
tasks:

1. Right-click btt.bank.ui.struts.forms package and select New → Class.

334 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. In New Java Class dialog box, name the new class WithdrawalXVal and add
com.ibm.btt.struts.base.OperationXValidate to the interfaces as shown in
Figure 8-76. Click Finish.

Figure 8-76 Create the WithdrawalXVal validator

3. Add the content of the xValidate method as shown in Example 8-15.

Example 8-15 The xValidate method snippet

/* (non-Javadoc)
* @see
com.ibm.btt.struts.base.OperationXValidate#xValidate(com.ibm.btt.base.Context)
*/
public String[] xValidate(Context ctx) {

String[] xErrors = null;
String sError = null;
try {

String value = ctx.getValueAt("Amount").toString();

 Running H/F 1 335

if (Double.parseDouble(value.toString()) <= 0) {
sError = "Only_non-zero_amounts_are_";

}
} catch (Exception e) {

sError = "Only_non-zero_amounts_are_";
}
if (sError != null) {

xErrors = new String[1];
xErrors[0] = sError;

}
return xErrors;

}

4. Save and close WithdrawalXVal.java.

Realizing the Struts actions
To realize the Struts action named /prepareWithdrawal, follow these steps:

1. Double-click the /prepareWithdrawal action in the Web diagram. The
struts-btt-withdrawal.xml opens in the Struts Configuration File Editor.

2. In the Action Mapping attributes section, select the Forward radio button and
type /withdrawal.jsp in the text box, as shown in Figure 8-77.

Figure 8-77 Realize Struts components - Realize /prepareWithdrawal action

3. Press Ctrl+S to save the change.

336 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

After switching back to the withdrawal Web diagram, to realize the Struts action
named /withdraw, do the following:

1. Double-click /withdraw action in the Web diagram. The
struts-btt-withdrawal.xml opens in the Struts Configuration File Editor.

2. Select the Type radio button in the Action Mapping attributes page, and in the
Type field, enter the value com.ibm.btt.struts.actions.EJBAction. In the
Input field, enter the value /withdrawal.jsp as well.

3. Select withdrawalForm for the Form Bean Name field in Form Bean
Specification section. Select Yes for the Validate field, as shown in
Figure 8-78.

Figure 8-78 Select withdrawalForm for the Form Bean Name field

 Running H/F 1 337

4. In the Action Mapping Extensions section, in the Class Name field, enter the
value com.ibm.btt.struts.config.BTTEJBActionMapping, as shown in
Figure 8-79.

Figure 8-79 Enter com.ibm.btt.struts.config.BTTEJBActionMapping in the Class Name

5. Click the Local Forwards tab.

6. Click Add in the Local Forwards section, name the new forward as success
and in the Path field, enter the value /result.jsp in the Forward Attributes
section.

7. Click Add again to add the forward failure, with /withdrawal.jsp in the Path
field, as shown in Figure 8-80.

Figure 8-80 Realize Struts components - realize /withdraw action - setting up Local Forwards

8. Save and close the struts-btt-withdrawal.xml file.

338 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

You have completed the following tasks so far:

� The Struts configuration file struts-btt-withdrawal.xml has been updated with
the /prepareWithdrawal and /withdraw Action Mapping information, as shown
in Example 8-16.

Example 8-16 struts-btt-withdrawal.xml snippet

<!-- Action Mappings -->
<action-mappings>

<action path="/prepareWithdrawal" forward="/withdrawal.jsp">
</action>
<action path="/withdraw"
 type="com.ibm.btt.struts.actions.EJBAction"
 name="withdrawalForm"
 input="/withdrawal.jsp"
 className="com.ibm.btt.struts.config.BTTEJBActionMapping">

<forward name="success" path="/result.jsp">
</forward>
<forward name="failure" path="/withdrawal.jsp">
</forward>

</action>
</action-mappings>

� The Web diagram has been updated, and now the /prepareWithdrawal,
/withdraw Action and the local forwards failure and success appear in color to
indicate that they have been realized, as shown in Figure 8-81.

Figure 8-81 Realizing Struts components - /prepareWithdrawal and /withdraw actions
realized

 Running H/F 1 339

Realizing the JSPs
This section indicates briefly how to realize the withdrawal.jsp and result jsp.

To realize the withdrawal.jsp, perform the following tasks:

1. Expand the BTTBankWeb/WebContent/btt/bank/ui/struts folder, right-click
and select New → Folder. Type withdrawal as the folder name, and click
Finish.

2. Double-click withdrawal.jsp in the Web diagram.

3. When the new JSP File wizard appears, the wizard provides the default
values. Accept these values. Ensure that Struts JSP is selected in the Model
field, and Configure advanced options is checked. Click Next. See
Figure 8-82.

Figure 8-82 New JSP file wizard

340 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

4. In the tag libraries page, add the tag libraries the JSP requires. The wizard
has already added the two most commonly used Struts tag libraries, that is,
html and bean. You can add more tag libraries, if needed.

However, in our sample, since only the html and Branch Transformation
Toolkit-specific tag library is required, perform the following tasks:

a. Select bean tag library, and then click Remove.

b. Click Add. The Select Tag Library dialog box opens.

c. Select /WEB-INF/btt-html.tld and change the prefix to btt.

d. Click OK, as shown in Figure 8-83.

Figure 8-83 Add the Branch Transformation Toolkit specific tag library

 Running H/F 1 341

5. In the next page, click Next to accept the default, or uncheck Use workbench
encoding to use UTF-8, and then click Next.

6. When the JSP File Choose Method Stubs to generate dialog box opens,
accept the default settings and click Next.

7. In the Form Field Selection page shown in Figure 8-84, withdrawalForm is
selected by default. Check the accountNumber, and amount fields, both of
which are input fields. Click Next.

Figure 8-84 Choosing form bean fields for withdrawal.jsp

342 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

8. In the next dialog box shown in Figure 8-85, design the input form used in the
withdrawal.jsp page. For the accountNumber field, input the following
parameters:

– ID: AccountNumber
– Label: AccountNumber

For the amount field, input the following parameters:

– ID: Amount
– Label: Amount

9. Click Finish.

Figure 8-85 Designing input fields

The withdrawal.jsp is created and opened in the Page Designer. As you can
see in the editor, the wizard-generated withdrawal.jsp file is simple. You can
tailor it by adding more elements and Branch Transformation Toolkit-specific

 Running H/F 1 343

features as described in the section “Using the Struts Tools BTT Extensions”
on page 347.

To implement the result.jsp, perform the following tasks:

1. Double-click the result.jsp in the Web diagram.

2. When the New JSP File wizard appears, the wizard provides the default
values. Accept these values. Ensure that Struts JSP is selected in the Model
field, and Configure advanced options is checked. Click Next.

3. In the tag libraries page, use Struts html and Branch Transformation Toolkit
btt tag libraries.

4. In the next dialog box, click Next to accept the default or deselect Use
workbench encoding to use UTF-8. Click Next.

5. When the JSP File Choose Method Stubs to generate dialog box opens,
accept the default settings and click Next.

6. In the Form Field Selection page, you are asked to supply the name of the
form bean from which withdrawal.jsp should get its fields, and specify which
fields to use.

Choose withdrawalForm in the Form bean entry drop-down list. Select the
trxErrorMessage, trxReplyCode, and accountBalance properties.

– trxErrorMessage: Input the following parameters here:

• Field type: text
• ID: TrxErrorMessage
• Label: TrxErrorMessage

– trxReplyCode: Input the following parameters here:

• Field type: text
• ID: TrxReplyCode
• Label: TrxReplyCode

– accountBalance: Input the following parameters here:

• Field type: text
• ID: AccountBalance
• Label: AccountBalance

7. Select /withdraw for the Form action field. Click Finish.

344 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The withdrawal.jsp and result.jsp pages are now created, as is the Web diagram,
as shown in Figure 8-86.

Figure 8-86 Realize Struts components - Realizing JSP pages

Completing the Web diagram
As you can see in Figure 8-86, the /prepareWithdrawal action has no connection
to other components. Bring it’s Forward attribute to this diagram.

1. Right-click /prepareWithdrawal action. Select Draw → Draw Selected From
from the context menu.

2. Select Forward → /withdrawal.jsp check box and click OK. See Figure 8-87.

Figure 8-87 Add Forward attribute to Web diagram

 Running H/F 1 345

Perform one more task to add the Action Input forward for /withdraw action.

1. Right-click /withdraw action. Select Draw → Draw Selected From from the
context menu.

2. Select <input> → /withdrawal.jsp check box and click OK, as shown in
Figure 8-88.

Figure 8-88 Add the Action Input forward for /withdraw action

Note: If you perform the Draw → Draw Selected From action and nothing
happens, you should close the Web diagram and reopen it to fix the Web
diagram editor.

346 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3. Press Ctrl+S to save your work. Your final Web diagram should look as
shown in Figure 8-89.

Figure 8-89 Realize Struts components - /prepareWithdrawal with Forward attribute
displayed and /withdraw actions realized with Action Input forward

Using the Struts Tools BTT Extensions
The Struts Tools BTT Extensions provides a graphical and easier way to work
with toolkit-extended Struts configuration files. The Struts Tools BTT Extensions
has the following features:

� Screen flow context

Specify the screen flow context used in Struts actions mappings from the
Screen Flow Context tab.

� Action mapping

Specify the BTT Extended Struts Action Type of each Struts standard action
from the Action Mapping tab.

� Final nodes

Specify the final nodes in the Struts process from the Final Nodes tag.

� WSIF message mapper

Define the WSIFmessage mapper for your WSIF Action from the WSIF
Message Mapper tab.

� Action condition

Specify the conditions trigger an action from the Action Condition tab.

 Running H/F 1 347

� Processor mapper

Specify the processor mapper that maps the flow context between the parent
flow and the subflow.

Configuring Struts Tools BTT Extensions for the sample application
To configure BTT Extensions for struts-btt-withdrawal.xml, do the following:

1. Close struts-btt-withdrawal.xml if it is not already closed.

2. In the Project Navigator view, expand the
BTTBankWeb/WebContent/WEB-INF folder. Right-click the
struts-btt-withdrawal.xml file, and select Open With → Struts Tools BTT
Extensions.

3. Select the Screen Flow Context tab. Use the following values in the Screen
Flow Context Definition page, as shown in Figure 8-90:

– Screen Flow Context Name: withdrawalServerCtx
– Is Local Context?: true

Figure 8-90 Configure Screen Flow Context

4. Click the Action Mapping tab. Select /withdraw in the Struts Action List
section, and enter the value WithdrawalServerOpInvoker in the Invoker ID

348 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

field. Enter btt.bank.ui.struts.forms.WithdrawalXVal in the Validator Class
field, as shown in Figure 8-91.

Figure 8-91 Configure BTT action mapping extension

5. Click the Final Nodes tab. Select /withdraw in the Struts Action List section,
and click Add to add this as the BTT Final Node, as shown in Figure 8-92.

Figure 8-92 Configure final nodes

6. Press Ctrl+S to save the change.

 Running H/F 1 349

Tailoring the JSPs
As mentioned earlier, Branch Transformation Toolkit provides its tag library to
work with the entire framework of the Struts Tools BTT Extensions. The JSP
wizard provided by WebSphere Studio Application Developer Integration Edition
5.1.1 does not know about the Branch Transformation Toolkit’s add-on. You
should, therefore, tailor the generated JSPs to utilize the feature provided by the
Struts Tools BTT Extensions.

The withdrawal.jsp that this application uses is a little different from the
withdrawal.jsp page the wizard has generated:

� This JSP defines the two Struts tag libraries you use:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>

� It then defines the start of the HTML section using the following tag:

<html:html>

Change this to <btt:html> and change the closing tag to </btt:html>.

� Under the <BODY> tag, display error messages by adding the <btt:errors>
tag:

<btt:errors/>

� It then defines the start of the FORM section using the following tag:

<html:form>

Change this to <btt:form> and change the closing tag to </btt:form>.

� The <html:text> tag is used to populate the input field with the contents of
the corresponding field from the WithdrawalForm form bean. Likewise,
Branch Transformation Toolkit provides the <btt:text> tag for the same
purpose:

<TR>
<TH>AccountNumber</TH>
<TD><html:text property="AccountNumber" /></TD>

Note: After you save the file, you might see the error message, “Exactly
one of "forward", "include" or "type" must be specified for
/prepareWithdrawal.” To fix the problem, follow these steps:

1. Reopen struts-btt-withdrawal.xml using Struts Configuration File
Editor. Click the Source tab.

2. Delete type="org.apache.struts.action.Action" from the action
/prepareWithdrawal.

3. Press Ctrl+S to save the change.

350 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

</TR>
<TR>

<TH>Amount</TH>
<TD><html:text property="Amount" /></TD>

</TR>

Change this to:

<TR>
<TD align="right"><btt:label text="AccountNumber"/></TD>
<TD align="left"><btt:text property="AccountNumber"/></TD>

</TR>
<TR>

<TD align="right"><btt:label text="Amount"/></TD>
<TD align="left"><btt:text property="Amount"/></TD>

</TR>

� The Submit button of the form is rendered using the <html:submit> tag:

<html:submit property="submit" value="Submit" />

You can use more suitable values such as:

<html:submit property="Withdraw" value="Withdrawal"/>

The complete withdrawal JSP is shown in Example 8-17.

Example 8-17 The complete withdrawal.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<btt:html>
<HEAD>
<%@ page
language="java"
contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"
%>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>withdrawal.jsp</TITLE>
</HEAD>

<BODY>
<btt:errors/>
<btt:form action="/withdraw">

<TABLE border="0">
<TBODY>

<TR>
<TD align="right"><btt:label text="AccountNumber"/></TD>
<TD align="left"><btt:text property="AccountNumber"/></TD>

 Running H/F 1 351

</TR>
<TR>

<TD align="right"><btt:label text="Amount"/></TD>
<TD align="left"><btt:text property="Amount"/></TD>

</TR>
<TR>

<TD><html:submit property="Withdraw" value="Withdrawal"/></TD>
<TD><html:reset /></TD>

</TR>
</TBODY>

</TABLE>
</btt:form>
</BODY>
</btt:html>

For result.jsp, follow the same procedure. The end result for this is similar to that
shown in Example 8-18.

Example 8-18 The complete result.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<btt:html>
<HEAD>
<%@ page
language="java"
contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"
%>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>result.jsp</TITLE>
</HEAD>

<BODY>
<btt:errors/>
<btt:form action="/withdraw">

<TABLE border="0">
<TBODY>

<TR>
<TD align="right"><btt:label text="TrxErrorMessage" /></TD>
<TD align="left"><btt:text readonly="true"

 property="TrxErrorMessage" /></TD>
</TR>
<TR>

<TD align="right"><btt:label text="TrxReplyCode" /></TD>
<TD algin="left"><btt:text readonly="true"

 property="TrxReplyCode" /></TD>

352 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

</TR>
<TR>

<TD align="right"><btt:label text="AccountBalance" /></TD>
<TD align="left"><btt:text readonly="true"

 property="AccountBalance" /></TD>
</TR>
<TR>

<TD><html:button property="Back" value="Back"
onclick="javascript:window.location='prepareWithdrawal.do'"/>

</TD>
<TD></TD>

</TR>
</TBODY>

</TABLE>
</btt:form>
</BODY>
</btt:html>

Creating an invoker for Struts actions
To create a Single Action EJB Invoker, perform the following tasks:

1. In the Project Navigator view, expand the BTTBankWeb/JavaSource folder,
right-click btt.invoker.struts package. Select New → Class from the context
menu.

2. Input the following properties for the new class, as shown in Figure 8-93 on
page 354:

– Name: WithdrawalInvoker
– Superclass: com.ibm.btt.cs.invoker.base.BeanInvokerImpl
– Interfaces: com.ibm.btt.cs.invoker.base.BeanInvokerForStrutsAction

 Running H/F 1 353

Figure 8-93 Create WithdrawalInvoker

3. Click Finish.

4. Complete it as shown in Example 8-19.

Example 8-19 WithdrawalInvoker.java

/*
 * Created on Nov 25, 2005
 *
 * To change the template for this generated file go to
 * Window>Preferences>Java>Code Generation>Code and Comments
 */
package btt.invoker.struts;

import java.util.Hashtable;
import btt.bank.business.logic.WithdrawalServerOp;
import btt.bank.business.logic.WithdrawalServerOpHome;

354 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

import com.ibm.btt.base.Constants;
import com.ibm.btt.base.Context;
import com.ibm.btt.base.DSEInvalidRequestException;
import com.ibm.btt.base.DSEObjectNotFoundException;
import com.ibm.btt.cs.invoker.base.BeanInvokerForStrutsAction;
import com.ibm.btt.cs.invoker.base.BeanInvokerImpl;

/**
 *
 * To change the template for this generated type comment go to
 * Window>Preferences>Java>Code Generation>Code and Comments
 */
public class WithdrawalInvoker

extends BeanInvokerImpl
implements BeanInvokerForStrutsAction {

/* (non-Javadoc)
 * @see com.ibm.btt.cs.invoker.base.BeanInvokerImpl#executeEJB()
 */
public Object executeEJB() throws Exception {

WithdrawalServerOp bean = (WithdrawalServerOp) getBeanInvokerProxy();
Hashtable result = (Hashtable) bean.execute(getSystemData(),getEjbParameters());
// save the result
Context repCtx = getContext();
repCtx.setValueAt("AccountBalance", result.get("AccountBalance"));
repCtx.setValueAt("TrxReplyCode", result.get("TrxReplyCode"));
repCtx.setValueAt("TrxErrorMessage", result.get("TrxErrorMessage"));
return result;

}

/* (non-Javadoc)
 * @see com.ibm.btt.cs.invoker.base.BeanInvoker#processRespondData(java.lang.Object)
 */
public Object processRespondData(Object ejbResult)

throws DSEInvalidRequestException {
//The ejbResult is SAE execution result.
String sTrxReplyCode = (String)((Hashtable)ejbResult).get("TrxReplyCode");
String forwardName = null;
if (sTrxReplyCode.equals("00")){

forwardName = "success";
}else{

forwardName = "failure";
}
return forwardName;

}

/* (non-Javadoc)
 * @see com.ibm.btt.cs.invoker.base.BeanInvoker#createBeanInvokerProxy()
 */

 Running H/F 1 355

public Object createBeanInvokerProxy() throws DSEInvalidRequestException {
//** 1: Get EJBHome Object
WithdrawalServerOpHome home = (WithdrawalServerOpHome) getHomeObject();

//** 2: Create Bean Proxy.
WithdrawalServerOp bean = null;
try {

bean = (WithdrawalServerOp) home.create();
} catch (Exception e) {

throw new DSEInvalidRequestException(Constants.COMPID, "", e.getMessage());
}
return bean;

}

/* (non-Javadoc)
 * @see

com.ibm.btt.cs.invoker.base.BeanInvokerForStrutsAction#parseRequestData(com.ibm.btt.base.Contex
t)

 */
public void parseRequestData(Context reqCtx)

throws DSEInvalidRequestException, DSEObjectNotFoundException {
Hashtable htEjbPara = getEjbParameters();
try {

this.setContext(reqCtx);
htEjbPara.put("Date",new java.util.Date());
htEjbPara.put("AccountNumber",reqCtx.getValueAt("AccountNumber"));
htEjbPara.put("Amount",new

Float(Float.parseFloat((String)reqCtx.getValueAt("Amount"))));
} catch (Exception e) {

e.printStackTrace();
throw new DSEInvalidRequestException(Constants.COMPID, "", e.getMessage());

}
}

/* (non-Javadoc)
 * @see

com.ibm.btt.cs.invoker.base.BeanInvokerForStrutsAction#setSessionObject(java.lang.Object)
 */
public void setSessionObject(Object arg0)

throws DSEInvalidRequestException, DSEObjectNotFoundException {
// TODO Auto-generated method stub

}
}

356 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

To configure the Single Action EJB Invoker properties file, perform the following
tasks:

1. Create a properties file named WithdrawalServerOpInvoker.properties in
the package btt.invoker.struts, and input the content shown in Example 8-20.

Example 8-20 WithdrawalServerOpInvoker.properties

implClass=btt.invoker.struts.WithdrawalInvoker
jndiName=ejb/btt/bank/business/logic/WithdrawalServerOpHome
factory=com.ibm.websphere.naming.WsnInitialContextFactory
location=iiop://localhost:2809
homeClassName=btt.bank.business.logic.WithdrawalServerOpHome
isLocal=false
csReplyFormat=

2. In the Project Navigator view, expand the BTTBankWeb/JavaSource folder.
In com.ibm.btt.cs.invoker.base package, double-click the
BeanInvokerRegistryMapper.properties file to open it.

3. Add the following line:

WithdrawalServerOpInvoker=btt.invoker.struts.WithdrawalServerOpInvoker:RB

4. Save and close the Properties File Editor.

Running the BTT Bank sample application
This section describes the process involved in running the sample application
and exploring the functionality built using the WebSphere Studio Application
Developer Integration Edition and its support for rapid development of
Struts-based Web applications.

Preparing the runtime environment
To prepare the runtime environment, follow these steps:

� Copy the configuration files by performing the following tasks:

a. Open the Java perspective, and expand the BTTBankBTT/business
folder.

b. Copy all the files, including dse.ini, dsectxt.xml, dsedata.xml,
dsefmts.xml, and dsetype.xml, to the new folder, dse, created in your C
drive.

� Associate the BTTBank EAR project with the server configuration.

a. From the Server perspective, right-click WBI SF in the Server
Configuration panel.

b. Select Add and remove projects from the context menu.

 Running H/F 1 357

c. In the pop-up dialog, select BTTBank and click Add. You will see that
BTTBank appears in the Configured projects list. Click Finish, as shown
in Figure 8-94 on page 358.

� Regenerate Deployment and RMIC Code. Use the following steps to
regenerate Deployment and RMIC Code for the BTTBankEJB, BTTCHAEJB
and BTTFormatterEJB projects:

a. Right-click the project.

b. Select Generate → Deployment and RMIC Code.

c. Click Select all, and then Finish in the pop-up dialog box in Figure 8-94.

Figure 8-94 Add BTTBank into the server configuration

Running the sample code
To ensure that the server is running, do the following:

1. In the Server perspective, right-click WBI SF either from the Server
Configuration view or the Servers view.

2. Select Start from the context menu.

358 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

In the console view, you will see a lot of messages. This means that the server is
running. When you see the message “Server server1 open for e-business”,
it means the server is fully started.

You can test the application using your Web browser:

1. Get into the sign-in page using the following URL, as shown in Figure 8-95:

http://localhost:9080/BTTBankWeb/btt/bank/ui/struts/signin/prepareSignIn.do

Only two sets of ID/Password work for this sample:

– ID: user01, Password: user01
– ID: user02, Password: user02

Figure 8-95 The sign-in page

2. Click Submit in the sign-in page. The withdrawal page shown in Figure 8-96
appears.

Figure 8-96 The withdrawal page

 Running H/F 1 359

3. Input the arbitrary Account Number and Amount, and then click Withdrawal.
The result page with the hard-coded values will be displayed as shown in
Figure 8-97.

Figure 8-97 The result page

8.3.9 Adding the Journal service
The Branch Transformation Toolkit provides a set of service objects that enable
an application to complete an operation. These services include client/server
connectivity, financial devices for input and output operations, table mapping
database service, electronic journal, generic pool, and so on.

In Branch Transformation Toolkit V5.1, services can be categorized into client
side services and server side services. For those services that belong to the
client side, only Java clients can utilize them. Server side services can be
invoked by a business process or a Single Action EJB.

This section discusses the electronic journal service. Our discussion is divided
into two parts, that is, setting up the service infrastructure and constructing the
dummy journal service.

Setting up the service infrastructure
To add a dummy journal service such as the CHA and Formatter services, the
Service EJB project bttsvcinfra.jar should be imported into the application. There
are four different service invocation types in Branch Transformation Toolkit v5.1.
If you are using the WSIF invocation type, the extra Service Web project
BTTServicesInfraWeb.war should be imported as well.

Importing utility JARs
To import the utility JAR files, follow these steps:

1. In the J2EE perspective, select BTTBank project in the Project Navigator
view, right-click, and select Import from the context menu.

360 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. In the Import pop-up window, select File system as the import source, and
then click Next.

3. In the next dialog box, click Browse and navigate to <BTT_install_dir>/jars,
and then click OK. Select bttjdbjsvc.jar and bttjdbtsvc.jar. Click Finish, as
shown in Figure 8-98.

Figure 8-98 Import bttjdbjsvc.jar and bttjdbtsvc.jar into the BTTBank project

Importing the Service EJB project bttsvcinfra.jar
1. Open the J2EE perspective and get into the J2EE Hierarchy view.

2. Right-click BTTBank in the Enterprise Applications folder. Select Import →
Import EJB Jar.

 Running H/F 1 361

3. Input the following values for EJB import as shown in Figure 8-98 on
page 361, and click Finish:

– EJB JAR File: <BTT_install_dir>\jars\bttsvcinfra.jar

– EJB project: bttsvcinfraEJB

– EAR project: BTTBank

.

Figure 8-99 Import the bttsvcinfraEJB project

Setting up project properties for bttsvcinfraEJB
To set up the project properties, follow these steps:

1. Select the Project Navigator view tab. The bttsvcinfra EJB Project appears.

2. Right-click the bttsvcinfraEJB project, and select Properties from the
context menu.

362 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

3. In the pop-up window, select Java JAR Dependencies. Select the Use EJB
JARs radio button, and then ensure that the bttbase.jar, bttjdbjsvc.jar, and
bttjdbtsvc.jar check boxes have been selected in the JAR/Module list. Click
Apply, as shown in Figure 8-100.

Figure 8-100 Add bttbase.jar, bttjdbjsvc.jar, and bttjdbtsvc.jar as dependent JARs

 Running H/F 1 363

4. In the same pop-up window, select Java Build Path, and then click the
Libraries tab. Ensure that three JARs, that is, bttbase.jar, bttjdbjsvc.jar,
and bttjdbtsvc.jar are added to the build path, as shown in Figure 8-101.

Figure 8-101 Add bttbase.jar, bttjdbjsvc.jar, and bttjdbtsvc.jar into build path

5. Click OK.

Generating deployment and RMIC code for bttsvcinfraEJB project
To generate the deployment and RMIC code, follow these steps:

1. In the Project Navigator view, right-click the bttsvcinfraEJB project and
select Generate → Deployment and RMIC Code.

2. In the pop-up dialog window, click Select all, and then Finish.

364 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Importing service Web project BTTServicesInfraWeb.war
To import the service Web project, follow these steps:

1. Switch to the J2EE Hierarchy view.

2. Right-click BTTBank in the Enterprise Applications folder. Select Import →
Import Web Module.

3. In the Import WAR file pop-up window, click Browse and navigate to
<BTT_install_dir>\jars directory. Select BTTServicesInfraWeb.war and
click Open.

4. In the same pop-up window, click New to create a new dynamic Web project,
BTTServicesInfraWeb. Click Finish.

5. The WAR Import pop-up will look as shown in Figure 8-102.

Note: After creating the project, you may see a pop-up dialog asking you to
repair the server configuration. Click OK to add the new project to the
BTTBank EAR project.

 Running H/F 1 365

Figure 8-102 Import the BTTServicesInfraWeb Web module

6. Click Finish.

Setting up project properties for BTTServicesInfraWeb
To set up the project properties, follow these steps:

1. Select the Project Navigator view tab. The BTTServicesInfraWeb Project
appears.

2. Right-click the BTTServicesInfraWeb project, and select Properties from
the context menu.

3. In the pop-up window, select Java JAR Dependencies. Ensure the
bttbase.jar, bttsvcinfra.jar check box is selected in the JAR/Module list.
Click Apply.

4. In the same pop-up window, select Java Build Path, and then click the
Libraries tab. Click Add JARs to add the bttbase.jar from BTTBank project.

366 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5. Click the Projects tab. Select bttsvcinfraEJB project, and then click OK, as
shown in Figure 8-103.

Figure 8-103 Add bttsvcinfraEJB project into build path

Constructing the Dummy Journal service
This section discusses creating the Java classes and properties files for the
Dummy Journal service. A new Java project should be created to host the
implementation of the service. This increases the reusability of the
implementation.

Creating the DummyJournal Java project
To create the DummyJournal Java project, follow these steps:

1. From the WebSphere Studio Application Developer Integration Edition menu,
select File → New → Project.

 Running H/F 1 367

2. In the pop-up window, select Java from the left navigation panel, and then
select Java Project from the right panel. Click Next.

3. Type DummyJournal in the Project name field. Click Finish. See Figure 8-104.

Figure 8-104 Create DummyJournal Java project

Setting up project properties for DummyJournal
To set up the project, follow these steps:

1. Select the Project Navigator view tab or the Package Explorer view tab if
you switched to Java perspective. The DummyJournal project opens.

2. Right-click the DummyJournal project, and select Properties from the
context menu.

3. In the pop-up window, select Java Build Path, and then click the Libraries
tab. Click Add JARs to add five JARs, that is, bttbase.jar, bttfmt.jar,
bttsvcinfra.jar, bttjdbjsvc.jar, and bttjdbtsvc.jar from BTTBank project.

4. Add JavaSource as the source folder. Select the Source tab, and click Add
Folder. In the Source Folder Selection dialog, click Create New Folder. Type

368 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

JavaSource in the folder name field, and then click OK. Another pop-up dialog
box opens, asking you whether you want to add DummyJournal/bin as the
output folder. Click OK, as shown in Figure 8-105.

Figure 8-105 Add JavaSource as the project’s source folder

Implementing DummyJournal service
To create the DummyJournal class, perform the following tasks:

1. Expand DummyJournal project, and right-click the JavaSource folder.
Select New → Package from the context menu. Type btt.bank.services in
the Name field of the New Java Package dialog. Click Finish.

2. Right-click the btt.bank.services package, select New → Class to create a
Java class. Input the following properties to create the class, and click Finish:

– Name: DummyJournal
– Superclass: com.ibm.btt.services.jdbcjournalservice.Journal
– Interfaces: com.ibm.btt.services.jdbcjournalservice.JournalService

 Running H/F 1 369

See Figure 8-106.

Figure 8-106 Create the DummyJournal class

To implement the DummyJournal class, perform the following steps:

1. Add the import statements shown in Example 8-21.

Example 8-21 Additional import statements for DummyJournal.java

import javax.swing.JOptionPane;
import com.ibm.btt.base.Settings;
import com.ibm.btt.base.DSEObjectNotFoundException;
import com.ibm.btt.base.Tag;
import com.ibm.btt.base.TagAttribute;

2. Implement the addRecord(Context arg0, String arg1) method as shown in
Example 8-22.

370 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Example 8-22 Implemented addRecord(Context arg0, String arg1) method for
DummyJournal.java

public int addRecord(Context arg0, String arg1)
throws DSEInvalidArgumentException, DSEInvalidRequestException,

DSEInternalErrorException, DSESQLException {
FormatElement formatter = null;
Hashtable dataHashtable = null;
String show = null;
try {

show=(String) Settings.getSettings().getValueAt("showMessagesOnServer");
} catch (DSEObjectNotFoundException e){

show = "false";
}
try {

formatter = new FormatElement();
formatter.setName(arg1);

 dataHashtable = formatter.formatHashtable(arg0);
} catch(Exception e) {

if (show.equals("true")) {
JOptionPane.showMessageDialog(null,

 e.toString(),
 "Exception",
 JOptionPane.ERROR_MESSAGE);

}
}
if (dataHashtable != null) {

if (show.equals("true")) {
String message = "The 'addRecord' method is now executed\n" +

 "The following data is added to the journal:\n\n" +
 dataHashtable.toString()+"\n\n";

JOptionPane.showMessageDialog(null,
 message,
 "Dummy journal service",
 JOptionPane.INFORMATION_MESSAGE);

}
}
return 0;

}

3. Implement the updateRecord(int arg0, Context arg1, String arg2) as shown in
Example 8-23.

Example 8-23 Implemented updateRecord(int arg0, Context arg1, String arg2) method
for DummyJournal.java

public int updateRecord(int arg0, Context arg1, String arg2)
throws

DSEInvalidRequestException, DSEInvalidArgumentException,
DSEInternalErrorException, DSESQLException {

 Running H/F 1 371

FormatElement formatter = null;
Hashtable dataHashtable = null;
String show = null;
try {

show=(String) Settings.getSettings().getValueAt("showMessagesOnServer");
} catch (DSEObjectNotFoundException e) {

show="false";
}
try {

formatter = new FormatElement();
formatter.setName(arg2);
dataHashtable = formatter.formatHashtable(arg1);

} catch(Exception e) {
if (show.equals("true")) {

JOptionPane.showMessageDialog(null,
 e.toString(),
 "Exception",
 JOptionPane.ERROR_MESSAGE);

}
}
if (dataHashtable != null) {
 if (show.equals("true")) {

String message = "to be updated with host reply data.\n" +
 "The following data added to the journal:\n\n" +
 dataHashtable.toString()+"\n\n";

 JOptionPane.showMessageDialog(null,
 message,
 "Dummy journal service",
 JOptionPane.INFORMATION_MESSAGE);

 }
}
return 0;

}

4. Save and close the Java Editor.

To create the DummyJournalImpl class, do the following:

1. Right-click the btt.bank.services package, select New → Class to create a
Java class.

2. Input the following properties to create the class:

– Name: DummyJournalImpl
– Superclass: com.ibm.btt.services.jdbcjournalservice.JournalImpl

3. Click Finish.

372 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Adding DummyJournal to BTTBank EAR project
To add the DummyJourna to BTTBank project, follow these steps:

1. Switch to the J2EE perspective, and expand the BTTBank project.

2. Double-click EAR Deployment Descriptor.

3. Click the Module tab.

4. Click Add in the Project Utility Jars section, as shown in Figure 8-107.

Figure 8-107 Click Add to add project utility JARs

Note: Since it is a dummy journal service, do not put any code in
DummyJournalImpl class.

 Running H/F 1 373

5. In the pop-up Add Utility JAR dialog, select DummyJournal, and then click
Finish, as shown in Figure 8-108.

Figure 8-108 Select the DummyJournal project

6. Click OK when the Repair Server Configuration dialog pops up.

7. Press Ctrl+S to save the change.

Adding DummyJournal to bttsvcinfraEJB EJB project
To add the DummyJournal to the bttvcinfraEJB project, follow these steps:

1. In the J2EE perspective, right-click the EJB module bttsvcinfraEJB. Select
Properties from the context menu.

374 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. In the pop-up window, select Java JAR Dependencies from the left
navigation panel, and check DummyJournal.jar in the right panel. Click
Apply, as shown in Figure 8-109.

Figure 8-109 Add DummyJournal project JAR as the dependent JAR

3. Select Java Build Path from the left navigation panel, and select the
Projects tab from the right panel. Select DummyJournal and then click OK.

Invoking the Dummy Journal service in the withdrawal
operation

This section describes the process involved in modifying the execute method of
the WithdrawalServerOpBean to utilize the dummy journal service. For the
service mechanism to work correctly, you should take care of a series of
properties files as well.

 Running H/F 1 375

Configuring the BTTBankEJB project
To configure the BTTBankEJB project, follow these steps:

1. In the J2EE perspective, right-click the BTTBankEJB project. Select
Properties from the context menu.

2. In the pop-up window, select Java JAR Dependencies in the left navigation
panel, and check bttjdbjsvc.jar, bttjdbtsvc.jar, and DummyJournal.jar in
the right panel. Click Apply.

3. Select Java Build Path in the left navigation panel, click the Projects tab,
and check the DummyJournal project. Click the Libraries tab. Click Add
JARs to add bttjdbjsvc.jar and bttjdbtsvc.jar from the BTTBank project.

4. Click OK.

Adding the Dummy Journal service to withdrawal Single Action EJB
To modify the withdrawal business Single Action EJB, do the following:

1. In BTTBankEJB project, open the WithdrawalServerOpBean.java file from
the ejbModule/btt/bank/business/logic folder.

2. Add more import statements, as shown in Example 8-24.

Example 8-24 More import statements required by adding journal service

import com.ibm.btt.services.jdbcjournalservice.Journal;

3. Modify the execute method as shown in bold in Example 8-25.

Example 8-25 Add journal service code into WithdrawalServerOp EJB

public Hashtable execute(BTTSystemData sysData, Hashtable reqData)
 throws Exception {

Hashtable result = null;
try {

// initialize context hierarchy
initialize(sysData);
Context SAEContext = getContext();
if (SAEContext.getParent() == null) {

Context parent = Context.getContextByInstanceID(getInstanceId());
SAEContext.chainTo(parent);

}

// set request data to withdrawalServerCtx
SAEContext.setValueAt("BranchId", (String)reqData.get("BranchId"));
SAEContext.setValueAt("AccountNumber",

 (String)reqData.get("AccountNumber"));
SAEContext.setValueAt("Date", (Date)reqData.get("Date"));
SAEContext.setValueAt("Amount", (Float)reqData.get("Amount"));
String hostBuff = ((FormatElement)getFormat("withdrawalCSRequestFmt"))

376 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

 .format(SAEContext);
setValueAt("HostBuff", hostBuff);
System.out.println("withdrawalServerOp SAE context:\n" +

 SAEContext.getKeyedCollection());

// Add an electronic journal record
Journal journal = (Journal)getService("JournalService");
int recordNum = journal.addRecord(getContext(),"preSendJournalFmt");

// set hard-coded response data to withdrawalServerCtx
SAEContext.setValueAt("TrxReplyCode", "00");
SAEContext.setValueAt("AccountBalance", "10000");
SAEContext.setValueAt("TrxErrorMessage", "withdrawalOK");

// Update the electronic journal record
journal.updateRecord(recordNum, getContext(), "afterRecJournalFmt");
journal.releaseServiceRequester();

result = ((FormatElement)getFormat("afterRecJournalFmt"))
 .formatHashtable(SAEContext);

}
catch (Exception e) {

e.printStackTrace();
throw e;

}
return result;

}

4. Save and close the Java File Editor.

In order to let the withdrawal Single Action EJB invoke the Dummy Journal
service properly, you should add at least three properties files in the ejbModule
folder, as shown in Example 8-26, Example 8-27, and Example 8-28 on
page 378.

Example 8-26 ServiceRequesterIDs.properties

Property file for Service Requester Definition
Definition is:
ServiceRequesterID = ResourceBundle
JournalService=DummyJournal

Include Invocation information
LocalJava=LocalJava
RemoteEJB=RemoteEJB
WSIFEJB=WSIFEJB
WSIFSoap=WSIFSoap

 Running H/F 1 377

Example 8-27 DummyJournal.properties

Property file for dummy journal requester
ServiceRequester=btt.bank.services.DummyJournal
ServiceType=Journal
CachingEnabled=false

The value of service invocation has to match the id in
ServiceRequesterIDs.properties
ServiceInvocation=RemoteEJB

Example 8-28 RemoteEJB.properties

Property file for Remote EJB Invocation Type
ServiceRequester=com.ibm.btt.services.EJBInvocation

Information of Remote EJB invocation
JndiName=ejb/com/ibm/btt/services/BTTServiceHolderEJBHome
ProviderURL=IIOP://localhost:2809/

The flowchart in Figure 8-110 shows the invocation steps of the three properties
files.

Figure 8-110 The service invocation process

Service Client
(For example, SAE)

ServiceID =

"JournalService"

Look up ServiceRequesterIDs.properties file, based on client
provided ServideID "JournalService". It will then access the
DummyJournal.properties (JournalService=DummyJournal).

Retrieve the ServiceRequester information from the
DummyJournal.properties, and know the invocation definition
is RemoteEJB (ServiceInvocation=RemoteEJB).

Look up ServiceRequesterIDs.properties file again, and find
out the RemoteEJB.properties file defines the invocation
related details (RemoteEJB=RemoteEJB).

Get Service Invocation information from the file
RemoteEJB.properties, and access to the service server via
the information.

378 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Registering the Dummy Journal service
The enhancement is almost complete. The final step is to register the service into
dse.ini. To do this, perform the following tasks:

1. Create the service definition file dsesrvce.xml.

a. In J2EE perspective, click the Project Navigator view. Right-click the
business folder in the BTTBankBTT project, and select New → Other
from the context menu.

b. In the New pop-up dialog box, select Simple in the left navigation panel,
and select File in the right panel. Click Next.

c. Type dsesrvce.xml in the File name field of the next window. Click Finish.

d. The XML Editor would have started without content. Click the Source tab,
copy and paste the snippet in Example 8-29 into the editor.

e. Press Ctrl+S to save the change.

f. Put this file in the c:\dse directory for runtime execution.

Example 8-29 The dsesrvce.xml file

<?xml version="1.0"?>
<dsesrvce.xml>

<DummyDB2Journal autoCommit="false" id="Journal" schema="SCHEMA01">
<column dataName="UserId" id="USERID"/>
<column dataName="TID" id="TERMINALID"/>
<column dataName="HostBuff" id="DATABUFFER"/>

</DummyDB2Journal>
</dsesrvce.xml>

2. Change the settings in the dse.ini file, by doing the following:

a. Double-click BTTBankBusiness.chae to start the CHA Editor. Click the
dse.ini tab. Set field id=showMessagesOnServer’s value property as true
in the settings keyed collection. If the field is not there, add it as shown in
Example 8-30.

Example 8-30 Adding setting in the dse.ini

<dse.ini>
<kColl id="settings" dynamic="false" >

...
<field id="showMessagesOnServer" value="true" description="" />
...

</kColl>
</dse.ini>

 Running H/F 1 379

b. Locate the services keyed collection in the tags keyed collection, add the
Dummy Journal service as shown in bold in Figure 8-31.

Example 8-31 Dummy Jounal service

<dse.ini>
<kColl id="settings" dynamic="false" >

...
<kColl id="tags" dynamic="false" >

...
<kColl id="services" dynamic="false" >

...
<field id="DummyDB2Journal"

 value="btt.bank.services.DummyJournalImpl"
 description="compound" />

...
</kColl>
...

</kColl>
...

</kColl>
</dse.ini>

c. Add dsesrvce.xml into the files keyed collection as shown in
Example 8-32:

Example 8-32 Adding dsesrvce.xml

<dse.ini>
<kColl id="settings" dynamic="false" >

...
<!-- ======================================= -->
<!-- Name of the generic definition files -->
<!-- ======================================= -->
<kColl id="files">

<field id="data" value="dsedata.xml"/>
<field id="context" value="dsectxt.xml"/>
<field id="type" value="dsetype.xml"/>
<field id="format" value="dsefmts.xml"/>
<field id="service" value="dsesrvce.xml"/>

</kColl>
...

</kColl>
</dse.ini>

d. Press Ctrl+S to save the change.

e. Copy dse.ini to c:\dse directory.

380 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Verifying the working of Dummy Journal
To ensure that the server is ready and running, do the following:

1. In Server perspective, right-click WBI SF either from Server Configuration
view or Servers view.

2. Select Start from the context menu.

In the console view, you will see a lot of messages popping up. This means
that the server is running. When you see the message “Server server1 open
for e-business”, it means the server is started.

You can test the application using your Web browser:

1. Navigate to the sign-in page using the following URL:

http://localhost:9080/BTTBankWeb/btt/bank/ui/struts/signin/prepareSignIn.do

2. Sign in with the following values, and click Submit. The withdrawal page
appears:

– Use ID: user01
– Password: user01

3. Input arbitrary Account Number and Amount, and then click Withdrawal.

4. After the submission, the browser will appear to be hanging. This is because
your input is required at the server side. Switch to the Java console called
Dummy journal service by pressing Alt+tab. A dialog box opens as shown in
Figure 8-111.

Figure 8-111 Dummy Journal Service addRecord method show result

 Running H/F 1 381

5. Click OK. Another dialog box opens, as shown in Figure 8-112.

Figure 8-112 Dummy Journal Service updateRecord method show result

6. Click OK. You will then see the browser showing the final result.

8.3.10 Using Graphical Builder and Business Process BTT Wizard
This section describes the process of building a deposit operation using BPEL,
and demonstrates how to use the Graphical Builder and the Business Process
BTT Wizard of the Branch Transformation Toolkit to achieve this goal. Due to the
similarity between withdrawal and deposit options, the withdrawalServerCtx and
withdrawal.gph Web diagram will be reused.

The Graphical Builder
The Graphical Builder is an Eclipse plug-in that helps construct multi-tiered BTT
application. It presents an architectural view for application architects and
developers. The Graphical Builder also helps to integrate disparate tools and
centralizes the operations. The benefit of using Graphical Builder is that it
streamlines the end-to-end development of the Branch Transformation Toolkit
application.

382 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-113 shows the relationships between the Graphical Builder and various
supporting tools.

Figure 8-113 Relationships between the Graphical Builder and various supporting tools

The Graphical Builder consists of a number of views:

� Graphical Editor view is the primary view of the Graphical Builder. It consists
of a set of tabbed pages in which you can edit values:

– ETEE page: This page displays various application nodes such as
business processes, Single Action EJBs, and so on. Additionally, the
Editor panel has palette with a set of objects:

• Select: A tool that helps select nodes.

• Marquee: A tool that helps draw a marquee for selecting multiple nodes
at a time.

CHA

Struts Web
Diagram Editor CHA Editor Business

ProcessFormat Editor

CHA formatter service

BTT Struts
Extension

Presentation Flow

Graphical
Builder

One EAR
for Deployment

Package

Business
Process Editor

Invoker

EJB
Descriptor

Single Action
EJB

 Running H/F 1 383

• Connection: A tool that helps draw linkages between various nodes.

• CompositionNode drawer: This group contains tools to create
presentation nodes, business process nodes, CHA context nodes,
formatter nodes, and Single Action EJB nodes in the Editor panel.

– Configuration page: This page displays the contents of the Graphical
Builder's configuration file.

– Graphical Builder file: This page displays the contents of the Graphical
Builder definition file. It displays the Graphical Builder definitions in the
order they are created. The tab displays the name of the file.

� Outline view lists all the application nodes in alphabetical order. You can
expand each node to display its structure. For example, when you expand a
business process node, you will see the CHA contexts and formatters
associated with this node.

� Properties view displays the properties of the selected presentation node,
business process node, format definition, CHA contexts, data definition, and
so on.

384 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-114 shows the views of the Graphical Builder:

Figure 8-114 Various views related to the Graphical Builder

Reverse engineering the Withdrawal operation
This chapter demonstrates the bottom-up approach to constructing a Branch
Transformation Toolkit application. With the Graphical Builder, you can reverse
engineer the withdrawal operation in the Graphical Editor view. To do this,
perform the following tasks:

1. Start the WebSphere Studio Application Developer Integration Edition.

2. Open the BTTBankBTT project, copy all the files from the business folder to
the presentation folder. Overwrite the existing files by clicking Yes To All in
the pop-up dialog box.

3. Select File → New → Other from the main menu.

 Running H/F 1 385

4. In the pop-up dialog box, select IBM Branch Transformation Toolkit in the
left navigation panel, and Graphical Builder Design File in the right panel,
as shown in Figure 8-115. Click Next.

Figure 8-115 Select Graphical Builder design file

5. In the Create new etee file dialog box, select BTTBankBTT as the BTT
Application project, and type BankBasicOp in the Graphical Builder File field.
Accept other default values and click Finish.

386 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

6. The Graphical Editor and other supporting views appear as shown in
Figure 8-116.

Figure 8-116 The BankBasicOp.etee opened within the Graphical Editor

 Running H/F 1 387

7. Select the Presentation icon () in the CompositionNode
drawer. Drop it in the Presentation Logic block, as shown in Figure 8-117.

Figure 8-117 Add a presentation component in the Graphical Editor

8. Right-click the Presentation icon, and select Open Properties Dialog from
the context menu. The Presentation Node Dialog appears, as shown in
Figure 8-118.

Figure 8-118 The presentation node dialog

9. Click Browse, select withdrawal.gph in BTTBankWeb project. Click OK, as
shown in Figure 8-119 on page 389. You will see that the Struts GPH File and

388 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

the Context Name field are populated with the correct values, as shown in
Figure 8-120. Click OK.

Figure 8-119 Select withdrawal.gph

Figure 8-120 The Presentation Node Dialog with correct values filled

 Running H/F 1 389

10.After the dialog box closes, you can see the presentation node renamed as
withdrawal, and the withdrawalServerCtx associated with it, as shown in
Figure 8-121.

Figure 8-121 The withdrawal presentation node and withdrawalServerCtx context appear

Note: If you look closely at the diagram, you will find that there is an
exclamation mark in the withdrawal node. You will see the warning
message “1: EJBAction ‘/withdraw’ needs to be implemented”, when you
move your mouse over the exclamation mark. This will be fixed
automatically, once the peer Business Logic component is set up.

390 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

11.Select the SingleActionEJB icon () from the
CompositionNode drawer. Drop it in the Business Logic block, as shown in
Figure 8-122.

Figure 8-122 A new EJB node added into the Graphical Editor

12.Click the ejb1 node. In the Properties view, click Property Editor against the
filename field as shown in Figure 8-123.

Figure 8-123 Select ejb-jar.xml by clicking Property Editor

 Running H/F 1 391

13.The Single Action EJB Node Dialog appears, as shown in Figure 8-124.

Figure 8-124 The Single Action EJB Node Dialog

14.Click Browse, select the ejb-jar.xml file in the ejbModule/META-INF folder of
the BTTBankEJB project, as shown in Figure 8-125. Click OK.

Figure 8-125 Select ejb-jar.xml file

15.Go back to the Single Action EJB Node dialog box, select
WithdrawalServerOp against the EJB name field. Click OK. See
Figure 8-126 on page 393.

392 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-126 Select WithdrawalServerOp EJB

16.After the dialog box closes, you can see that the ejb1 node is renamed as
WithdrawalServerOp, as shown in Figure 8-127.

Figure 8-127 The ejb1 node renamed as WithdrawalServerOp

Note: At this time, there should be a withdrawalServerCtx context node
associated with the EJB node. If it does not appear, you should add it
manually.

 Running H/F 1 393

17.Ensure that the BTTBankBusiness.chae is opened with the Graphical Editor.
Drag the withdrawalServerCtx context from the CHA Editor and drop it into
the WithdrawalServerOp EJB node, as shown in Figure 8-128.

Figure 8-128 Drag and drop the withdrawalServerCtx to WithdrawalServerOp EJB node

394 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

After this operation, you can see that withdrawalServerCtx appears and
associates with the WithdrawalServerOp EJB node, as shown in
Figure 8-129.

Figure 8-129 A withdrawalServerCtx context node associated with theWithdrawalServerOp EJB node

18.One more task is required to make the diagram perfect. Click the line
between the withdrawal presentation node and the WithdrawalServerOp EJB
node. If you find some settings missing in the Properties view, as shown in
Figure 8-130 on page 396, use the following values to correct the problem:

– implClass: WithdrawalInvoker
– invoker folder: /BTTBankWeb/JavaSource/btt/invoker/struts
– invoker package: btt.invoker.struts

 Running H/F 1 395

Figure 8-130 Some invokers’ properties setting missing

After providing the values, the diagram will look as shown in Figure 8-131.

Figure 8-131 The fully reversed engineered Withdrawal operation

19.Press Ctrl+S to save your work.

396 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Constructing the Deposit operation
This section discusses the construction of the Deposit operation. As discussed in
8.3.1, “Development paths” on page 248, the top-down approach should be used
to build the operation. The deposit operation uses BPEL, a flexible,
standards-based approach for defining and executing the business processes,
as its implementation.

Start from the Graphical Builder, utilize the BPEL Editor, a development tool that
comes with WebSphere Studio Application Developer Integration Edition 5.1.1,
and Business Process BTT Wizard, a tool that belongs to Branch Transformation
Toolkit 5.1, to complete the business logic. Struts tools should be used to add the
presentation logic of the deposit operation.

The tools you should use are described below.

 Running H/F 1 397

The BPEL Editor
The BPEL Editor, also referred to as the BPEL Process Editor, is a graphical
programming environment that is used to create and visually manipulate
business processes. Figure 8-132 shows the BPEL Editor.

Figure 8-132 The BPEL Editor

Processes are constructed in the process area (3) of the canvas (6), by dragging
activities from the palette (1). Definitions of variables, partner links, and
correlation sets are held in separate areas (2, 5, 8) on the canvas. Selecting any
activity brings up the action bar (4), which contains a series of icons related to
the activity, including adding Fault Handlers. The details area (7) below the
canvas provides the means for configuring the currently selected activity.

For more information about BPEL, refer to the IBM Redbook WebSphere
Business Integration Server Foundation V5.1 Handbook, SG24-6318.

398 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The Business Process BTT Wizard
The Business Process BTT Wizard provides a graphical user interface (GUI) to
help you extend your business processes to take advantage of the BTT Abstract
Layer. The Abstract Layer provides mapping between messages and process
contexts, enables the business processes to access other toolkit components
such as CHA. Refer to the online help for more information about the BTT
Abstract Layer.

The Business Process BTT Wizard helps you customize the business process
code or the BPEL files, from the following aspects:

� Specifying the CHA context associated with the business process.

� Specifying the process type, that is, general process, login process, or logout
process.

� Specifying the mapping relationship between CHA contexts and process
results.

� Specifying external snippet classes for the business process.

� Enabling conditional navigation based on snippet results.

� Adding the variables in the process to the BPEL file and adding the
associated message definition of the variables to the WSDL file.

In short, the tool saves you from modifying the BPEL files directly, thus
increasing your productivity while developing a Branch Transformation Toolkit
application.

Setting up the BPEL project
To set up the project, follow these steps:

1. Switch to the Project Navigator view of the J2EE perspective, right-click
BTTBankProcess project and select Properties from the context menu.

2. In the pop-up window, select Java Build Path, and then click the Libraries
tab.

 Running H/F 1 399

3. Select JRE System Library [eclipse], then click Edit, as shown in
Figure 8-133.

Figure 8-133 Change JRE System Library for BTTBankProcess project

400 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

4. In the Edit Library pop-up dialog box, select WebSphere V5.1 EE JRE, and
click Finish, as shown in Figure 8-134.

Figure 8-134 Select WebSphere V5.1 EE JRE

5. Click OK in the project properties window.

Using the Graphical Builder
To work with the Graphical Builder, follow these steps:

1. Switch to the Graphical Builder perspective, open the BankBasicOp.etee
file in the BTTBankBTT project.

 Running H/F 1 401

2. Select the BPNode icon () from the CompositionNode
drawer, and drop it into the Business Logic block, as shown in Figure 8-135.

Figure 8-135 A new BP node added into the Graphical Editor

3. Click the bp1 node, and select Open Properties Dialog from the context
menu, as shown in Figure 8-136.

Figure 8-136 The Business Process Node Dialog

402 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

4. Click Create, and enter the following values in the New Business Process
dialog, as shown in Figure 8-137:

– Source folder: /BTTBankProcess
– Package: btt.bank.business.logic
– File name: deposit

Figure 8-137 Create the deposit business process

5. Click Next.

 Running H/F 1 403

6. Select Flow-based BPEL Process as the process type, and then click
Finish, as shown in Figure 8-138.

Figure 8-138 Select flow-based BPEL Process as the process type

The deposit.bpel file will be opened in the BPEL Editor as shown in
Figure 8-139 on page 405.

404 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-139 The deposit.bpel file is opened in BPEL editor

Using the BPEL Editor and the Business Process BTT Wizard
To use the BPEL Editor and the Business Projecess BTT Wizard, follow these
steps:

1. In the BPEL Editor, select the Java Snippet icon () and add the snippet
to the flow. Rename the snippet as depositSnippet. See Figure 8-140.

Figure 8-140 The depositSnippet icon added into the flow

 Running H/F 1 405

2. Weave the snippet into the path between the Receive and Reply icons.

a. Drag the arrow from the Reply icon to the depositSnippet icon. See
Figure 8-141.

Figure 8-141 Drag the arrow from Reply icon to depositSnippet icon

b. Click Set Link in the action bar of the depositSnippet, and then click the
Reply icon. See Figure 8-142.

Figure 8-142 Set the link between depositSnippet and Reply node

3. Press Ctrl+S to save the changes.

4. Set up Branch Transformation Toolkit specific features for Deposit operation.

a. Go back to Graphical Editor with BankBasicOp.etee, right-click the
deposit business process icon, and select Launch Business Process
BTT Wizard from the context menu.

b. In the pop-up window, click Select CHA File to select the dsectxt.xml file
in the business folder of the BTTBankBTT project. Select

406 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

withdrawalServerCtx in the Context Name field. Set remote in the
Context Mode field and populate the Map List field with TrxErrorMessage,
TrxReplyCode, AccountBalance, as shown in Figure 8-143. Click Next.

Figure 8-143 Add context-related information to BPEL file

Note: In our sample, we chose withdrawalServerCtx for deposit
operation since the data required by the two operations are the same.
For simplicity, we reused withdrawalServerCtx.

 Running H/F 1 407

c. The implementation class of the DepositSnippet is shown in Figure 8-144.
Click Next to continue.

Figure 8-144 Snippet implementation file selection page

d. Set the navigation condition settings later. Click Finish.

408 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5. Edit the depositInterface.wsdl file.

a. In the BTTBankProcess project, open the depositInterface.wsdl file in
the btt.bank.business.logic package with WSDL Editor, as shown in
Figure 8-145.

Figure 8-145 depositInterface.wsdl in WSDL Editor

b. In the Messages area, expand the InputMessage, and right-click the part
contents, and select Delete, as shown in Figure 8-146.

Figure 8-146 Delete contents part from InputMessage

 Running H/F 1 409

c. Right-click InputMessage, select Add Child → Part to add a part. Type
Amount in the New Part dialog, as shown in Figure 8-147 on page 410.

Figure 8-147 Add Amount to InputMessage

d. Likewise, add AccountNumber to InputMessage.

e. Save and close the WSDL Editor.

6. Set up variables for deposit.bpel.

a. Open deposit.bpel with BPEL Editor.

b. Select OutputVariable in the Variables area, and then click the Message
tab in the details area, as shown in Figure 8-148.

Figure 8-148 Set up the OutputVariable

c. Click Browse. In the pop-up dialog, select depositInterface.wsdl in the
btt.bank.business.logic package of the BTTBankProcess project. Select
OutputMessage as the message. Click OK, as shown in Figure 8-149 on
page 411.

410 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-149 Select the OutputMessage of the depositInterface.wsdl as the deposit
flow’s OutputVariable

d. Select cha in the Variables area, then click the Message tab in the details
area.

e. Click Browse. In the pop-up dialog box, then select cha.wsdl in the
BTTBankProcess project. Select cha as the message. Click OK.

f. Save the changes and close the BPEL Editor.

Setting up project properties for BTTBankProcess
To set up the project properties for BTTBankProcess, follow these steps:

1. Right-click the BTTBankProcess project, and select Properties from the
context menu.

2. In the pop-up window, select Java JAR Dependencies. Ensure that the
bttbase.jar, bttfmt.jar, bttsvrflow.jar, bttjdbjsvc.jar, bttjdbtsvc.jar,
DummyJournal.jar, and bttsvcinfra.jar check boxes have been selected in
the JAR/Module list. Click Apply.

3. In the same pop-up window, select Java Build Path, and click the Libraries
tab. Click Add JARs to add bttbase.jar, bttfmt.jar, bttsvrflow.jar,
bttjdbjsvc.jar, bttjdbtsvc.jar, and bttsvcinfra.jar from the BTTBank project.

4. In the Java Build Path dialog box, click the Projects tab. Select
DummyJournal project, and then click OK.

 Running H/F 1 411

Adding code to the BTTBankProcess project
Implement the DepositSnippetImplement class by performing the following tasks:

1. Open DepositSnippetImplement.java from the
btt.bank.business.logic.snippets package.

2. Add the import statements shown in Example 8-33.

Example 8-33 Additional import statements for DepositSnippetImplement.java

import com.ibm.btt.base.Context;
import com.ibm.btt.formatter.client.FormatElement;
import com.ibm.btt.services.jdbcjournalservice.Journal;

3. Add the code shown in Example 8-34 in the execute method.

Example 8-34 The execute method for the DepositSnippetImplement class

public int execute() throws BTTBPException {
System.out.println("Executed depositServerOp.snippets.initial");
//User code here
try{

// initialize context hierarchy
Context BPContext = getContext() ;
if(BPContext.getParent() == null){

Context parent= Context.getContextByInstanceID(getSystemData()
 .getInstanceId());

BPContext.chainTo(parent);
}

// set data to deposit context
String hostBuff = ((FormatElement)getFormat("withdrawalCSRequestFmt"))

 .format(BPContext);
setValueAt("HostBuff", hostBuff);
System.out.println("deposit BP context:\n" +

BPContext.getKeyedCollection());

// writes to the journal using the appropriate format
Journal journal = (Journal)getService("JournalService");
int recordNum = journal.addRecord(BPContext,"preSendJournalFmt");

// Set hard coded response data to deposit context
BPContext.setValueAt("TrxReplyCode", "00");
BPContext.setValueAt("AccountBalance", "10000");
BPContext.setValueAt("TrxErrorMessage", "depositOK");

// Update the electronic journal record
journal.updateRecord(recordNum,getContext(),"afterRecJournalFmt");
journal.releaseServiceRequester();

} catch(Exception e){

412 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

e.printStackTrace();
}
System.out.println("deposit : executeJournalHostRequestDataStep ok!");
return 1;

}

4. Save and close the Java Editor for DepositSnippetImplement.java.

5. Copy three files, DummyJournal.properties, RemoteEJB.properties, and
ServiceRequesterIDs.properties from the ejbModule folder of the
BTTBankEJB project to the BTTBankProcess project as shown in
Figure 8-150.

Figure 8-150 Add three properties files into BTTBankProcess project

Generating deploy code for deposit.bpel
To generate the deply code, follow these steps:

1. Right-click the deposit.bpel file from the btt.bank.business.logic package of
the BTTBankProcess project. Select Enterprise Services → Generate
Deploy Code from the context menu, as shown in Figure 8-151 on page 414.

 Running H/F 1 413

Figure 8-151 Generating deploy code

2. In the pop-up window, click ProcessPortType in the left navigation panel.
Select the SOAP/HTTP check box and then the Apache radio button. Click
OK, as shown in Figure 8-152.

Figure 8-152 Generate BPEL Deploy Code

414 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The following projects are generated, containing the deploy code:

� BTTBankProcessEAR
� BTTBankProcessEJB
� BTTBankProcessWeb

You will see some errors. These can be fixed later (Can we say this? If the
solution is provided in this chapter/ book, shouldn’t we cross-reference it?).

Configuring generated projects
To configure BTTBankProcessEAR, perform the following tasks:

1. Ensure that both BTTBankProcess and DummyJournal projects are added
as the Project Utility JARs.

2. Import the following JARs from <BTT_install_dir>/jars to the
BTTBankProcessEAR project:

– bttbase.jar
– bttfmt.jar
– bttjdbjsvc.jar
– bttjdbtsvc.jar
– bttsvcinfra.jar
– bttsvcbean.jar
– bttsvrflow.jar

To configure BTTBankProcessEJB, perform the following tasks:

1. In the Java JAR Dependencies panel, ensure that both DummyJournal and
BTTBankProcess are added as the dependent JARs.

2. In the Libraries page of the Java Build Path panel, do the following:

a. Ensure that the JRE System Library is WebSphere v5.1 EE JRE.

b. Ensure that these two JARs are added into the build path. If not, add them
by clicking Add Variable.

• WAS_EE_V51/lib/wsadiebp.jar
• WAS_EE_V51/lib/wsatlib.jar

c. Add the following JARs into the build path (use those that are there in the
BTTBankProcessEAR project):

• bttbase.jar
• bttfmt.jar
• bttjdbjsvc.jar
• bttjdbtsvc.jar
• bttsvcinfra.jar
• bttsvrflow.jar

 Running H/F 1 415

To configure BTTBankProcessWeb, in the Libraries page of the Java Build Path
panel, perform the following tasks:

a. Ensure that the JRE System Library is WebSphere v5.1 EE JRE.

b. Ensure that these two JARs are added into the build path. If not, add them
by clicking Add Variable.

• WAS_EE_V51/lib/wsadiebp.jar
• WAS_EE_V51/lib/wsatlib.jar

c. Add the following JARs into the build path (use those in the
BTTBankProcessEAR project):

• bttbase.jar
• bttfmt.jar
• bttjdbjsvc.jar
• bttjdbtsvc.jar
• bttsvcinfra.jar
• bttsvrflow.jar

To regenerate the deploy code for deposit.bpel, perform the following tasks:

1. Right-click the deposit.bpel file from the btt.bank.business.logic package of
the BTTBankProcess project. Select Enterprise Services → Generate
Deploy Code from the context menu, as shown in Figure 8-151 on page 414.

2. In the pop-up window, click ProcessPortType in the left navigation panel.
Select the SOAP/HTTP check box and then the Apache radio button. Click
OK.

Laying out the presentation logic for the deposit operation
Go back to the Graphical Editor. You will see that the canvas looks like the one
shown in Figure 8-153 on page 417. All the three components use the
withdrawalServerCtx. You can reuse the withdrawal.gph Web diagram and the
struts-btt-withdrawal.xml Struts module here.

416 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-153 The deposit BP node with withdrawalServerCtx appears

To add more Web components, perform the following tasks:

1. Double-click the withdrawal icon in the Presentation Logic block to bring up
the Web diagram.

2. Use the icons in the palette to add two actions and a Web page to the canvas.

Rename the actions as shown in Figure 8-154 on page 418.

Rename the Web page as deposit.jsp with
/btt/bank/ui/struts/withdrawal/ module name prepended.

3. Move the result.jsp icon a little lower since you will need it to display the
result of a deposit operation.

 Running H/F 1 417

Figure 8-154 More components added to withdrawal Web diagram

To design the application flow, perform the following tasks:

1. Create a connection from the deposit.jsp to the /deposit action.

2. Create a local forward back from the /deposit action to the deposit.jsp. Use
failure as the forward name.

3. Create a local forward to the result.jsp, and mark the forward as success.

4. Associate the /deposit action to the withdrawalForm form bean.

5. Press Ctrl+S to save the change.

418 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

After completing these steps, the Web diagram will look as shown in
Figure 8-155.

Figure 8-155 Connect Web components

To realize the Struts actions, perform the following tasks.

To realize the /prepareDeposit action:

1. Double-click the /prepareDeposit action in the Web diagram. As you can
see, the struts-btt-withdrawal.xml has been opened in the Struts
Configuration File Editor.

2. In the Action Mapping attributes section, select the Forward radio button and
type /deposit.jsp in the text box. Press Ctrl+S to save the change.

To realize the /deposit action, switch back to the withdrawal Web diagram:

1. Double-click the /deposit action in the Web diagram. The
struts-btt-withdrawal.xml file opens.

2. Select the Type radio button in the Action Mapping attributes page, and
populate the Type field with the value
com.ibm.btt.struts.actions.WSIFAction. Populate the Input field with the
value /deposit.jsp.

3. Select withdrawalForm for the Form Bean Name field in the Form Bean
Specification section. Select Yes for the Validate field.

 Running H/F 1 419

4. In the Action Mapping Extensions section, populate in the Class Name field
with com.ibm.btt.struts.config.BTTWSIFActionMapping.

See Figure 8-156.

Figure 8-156 Set up action mappings for the /deposit action

420 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5. Click the Local Forwards tab. Ensure that /deposit is selected.

Click Add in the Local Forwards section, name the new forward success, and
populate the Path field in the Forward Attributes section with /result.jsp.

Click Add again to add the forward failure with the /deposit.jsp in the Path
field.

6. Save and close the struts-btt-withdrawal.xml file.

To realize the deposit.jsp, perform the following tasks:

1. Double-click the deposit.jsp in the Web diagram.

2. When the New JSP file wizard opens, the wizard provides the default values,
which should be accepted. Ensure that Struts JSP is selected in the Model
field, and that Configure advanced options is checked. Click Next.

3. In the tag libraries page, choose Struts html and Branch Transformation
Toolkit’s /WEB-INF/btt-html.tld tag libraries. Click Next.

4. In the next page, click Next to accept the default, or deselect Use workbench
encoding to use UTF-8, and then click Next.

5. Click Next when the JSP File Choose Method Stubs to generate dialog box
opens.

6. In the Form Field Selection page, the withdrawalForm is selected by default.
To specify which fields to use, check the accountNumber, and amount
fields. Both accountNumber and amount will be the input fields. Click Next.

7. In the next dialog box, design the input form used in the deposit.jsp page. For
the accountNumber field, input the following parameters:

– ID: AccountNumber
– Label: AccountNumber

For the amount field, input the following parameters, and click Finish:

– ID: Amount
– Label: Amount

To complete the Web diagram, perform the following steps:

For /prepareDeposit action, do the following:

1. Close the withdrawal.gph Web diagram and reopen it.

2. Right-click the /prepareDeposit action. Select Draw → Draw Selected From
from the context menu.

3. Select Forward → /deposit.jsp check box and click OK.

 Running H/F 1 421

For /deposit action, do the following:

1. Right-click /deposit action. Select Draw → Draw Selected From in the
context menu.

2. Select <input> → /deposit.jsp check box and click OK.

3. Press Ctrl+S to save your work.

The final Web diagram looks as shown in Figure 8-157.

Figure 8-157 The final Web diagram

To apply Branch Transformation Toolkit-specific settings to
struts-btt-withdrawal.xml, perform the following tasks:

1. Right-click the WebContent/btt/bank folder in the BTTBankWeb project,
select New → Folder to create a new folder named business. Create a logic
folder under the business folder.

2. Copy BTTSystemData.xsd and cha.wsdl from the BTTBankProcess project
to the WebContent folder of the BTTBankWeb project.

3. Copy deposit.wsdl, deposit_ProcessPortType_SOAP.wsdl, and
depositInterface.wsdl from the btt.bank.business.logic package of the
BTTBankProcess project to the WebContent/btt/bank/business/logic folder of
the BTTBankWeb project.

4. Reopen struts-btt-withdrawal.xml by Open with → Struts Tools BTT
Extensions command.

422 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5. Click the WSIFMessage Mapper tab, click Add in the Defined WSIFMessage
Mapper section to add a mapper named requestMap. Click Add in the
WSIFMessage Mapper Elements section to add the elements shown in
Table 8-5 into Figure 8-158:

Table 8-5 Data elements defined in the requestMap

Figure 8-158 The requestMap and the data elements

Add another mapper named replyMap, and define the elements shown in
Table 8-6:

Table 8-6 Data elements defined in the replyMap

Context data element WSIF message partkey Converter class name

AccountNumber AccountNumber

Amount Amount

Context data element WSIF message partkey Converter class name

TrxErrorMessage TrxErrorMessage

TrxReplyCode TrxReplyCode

 Running H/F 1 423

6. Click the Action Mapping tab. Select the /deposit action in the Struts Action
List. You will see that BTT WSIF Action is selected as the Action Type in the
BTT Extended Struts Action Type section.

7. Click the Select WSDL button in the BTT Extended Struts Action Properties
section, and select the deposit_ProcessPortType_SOAP.wsdl file from the
/WebContent/btt/bank/business/logic directory of the BTTBankWeb project.

8. Enter the following values:

– Validator Class: btt.bank.ui.struts.forms.WithdrawalXVal
– WSIF to Context: replyMap
– WSIF from Context: requestMap

9. Click Select Context next to the Action Context field, and select dsectxt.xml
in the presentation folder of the BTTBankBTT project. Choose
withdrawalServerCtx for the Action Context field, as shown in Figure 8-159.

10.Press Ctrl+S to save the changes.

Figure 8-159 Set up the WSIF Action for the deposit operation

11.In the BTT WSIF Action Map section, click Add to map an item using the
values specified in Table 8-7 on page 425. In this example, two zeros (“00”) of

AccountBalance AccountBalance

Context data element WSIF message partkey Converter class name

424 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

the TrxReplyCode means that the process ran successfully. When the Struts
extension receives the successful reply code, Struts performs the success
forward, /result.jsp, in this case.

Table 8-7 Properties for the success forward of the /deposit WSIF action

After adding the BTT WSIF Action Map, you will see it displayed as shown
in Figure 8-160:

Figure 8-160 Set the success forward for /deposit action

12.Save and close the Struts Tools BTT Extensions Editor.

To tailoring the deposit.jsp, perform the following steps:

1. Change the deposit.jsp file as shown in bold in Example 8-35:

Example 8-35 The final deposit.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/btt-html.tld" prefix="btt" %>
<btt:html>
<HEAD>
<%@ page
language="java"
contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"
%>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>deposit.jsp</TITLE>

WSIFMessage Part Key Struts Forward Name Return Result

TrxReplyCode success 00

 Running H/F 1 425

</HEAD>

<BODY>
<btt:errors/>
<btt:form action="/deposit">

<TABLE border="0">
<TBODY>

<TR>
<TD align="right"><btt:label text="AccountNumber"/></TD>
<TD align="left"><btt:text property="AccountNumber"/></TD>

</TR>
<TR>

<TD align="right"><btt:label text="Amount"/></TD>
<TD align="left"><btt:text property="Amount"/></TD>

</TR>
<TR>

<TD><html:submit property="Deposit" value="Deposit" /></TD>
<TD><html:reset /></TD>

</TR>
</TBODY>

</TABLE>
</btt:form>
</BODY>
</btt:html>

To change the struts-btt-signin.xml to use deposit operation, perform the
following tasks:

1. Open the struts-btt-signin.xml file using Struts Configuration File Editor.

2. Click the Source tab and make the changes as shown in bold in
Example 8-36:

Example 8-36 Modified struts-btt-signin.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<struts-config>

<data-sources>
</data-sources>

<form-beans>
 <form-bean name="signInForm"

 type="btt.bank.ui.struts.forms.SignInForm"/>
</form-beans>

<global-exceptions>
</global-exceptions>

426 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

<global-forwards>
</global-forwards>

<action-mappings>
<action path="/prepareSignIn"

forward="/signin.jsp"
className="org.apache.struts.action.ActionMapping"
parameter="signIn"/>

<action name="signInForm"
 path="/signIn"
 className="com.ibm.btt.struts.config.BTTEJBActionMapping"
 type="com.ibm.btt.struts.actions.EJBSignInAction"
 input="/signin.jsp"
 invokerId="signInInvoker"
 validator="btt.bank.ui.struts.forms.SignInXVal"
 validate="true"
 parameter="signIn">

<forward name="success"
contextRelative="true"
path="/btt/bank/ui/struts/withdrawal/prepareDeposit.do" />

 <forward name="signin"
 path="/signin.jsp"/>

</action>
</action-mappings>

<flowcontext contextName="signInCtx" local="true" />

<plug-in className="com.ibm.btt.struts.plugins.BTTDefaultNotifier" />

<finals>
 <final type="forward"

name="/btt/bank/ui/struts/withdrawal/prepareDeposit.do"/>
</finals>

</struts-config>

To wire the presentation logic to the business logic for deposit operation, perform
the following tasks:

1. Open BankBasicOp.etee with the Graphical Editor.

2. Double-click the line between the withdrawal presentation node and the
deposit BP node. In the pop-up window, select the Access with WSIF check
box.

 Running H/F 1 427

3. Click Browse and select deposit_ProcessPortType_SOAP.wsdl in the
folder WebContent/btt/bank/business/logic of the BTTBankWeb project.

4. Click OK.

5. Click OK again to complete the setup as shown in Figure 8-161.

Figure 8-161 Set up WSIF link properties

6. Press Ctrl+S to save your work.

428 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-162 shows the final design within the Graphical Editor.

Figure 8-162 The final design in the Graphical Editor

To test the deposit business process, perform the following tasks:

Ensure that the DB2 server is ready and running:

1. Add BTTBankProcessEAR to the WBI SF server instance.

2. In the Server perspective, right-click WBI SF either from the Server
Configuration view or the Servers view. Select Start from the context menu.

In the console view, you will see a lot of messages. This means that the
server is running. When you see the “Server server1 open for e-business”
message, it means the server is fully started.

3. Get into the sign-in page using the following URL:

http://localhost:9080/BTTBankWeb/btt/bank/ui/struts/signin/prepareSignIn.do

 Running H/F 1 429

4. Input the following values and click Submit:

– Use ID: user01
– Password: user01 ,

A deposit page, as shown in Figure 8-163, opens.

Figure 8-163 The Deposit page

5. Input arbitrary Account Number and Amount, and then click Deposit. After
the submission, you will see that the browser appears to be hanging for a
while. The Dummy journal service dialog box opens as shown in
Figure 8-164. Click OK.

Figure 8-164 The message from the addRecord method of the dummy journal service

430 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

6. In the next window shown in Figure 8-165, click OK.

Figure 8-165 The other message from the updateRecord method of the dummy journal
service

The browser displays the final result as shown in Figure 8-166.

Figure 8-166 The Deposit Result page

8.4 Developing a rich Java client
This section describes how to build the business application described in 8.3,
“Developing an application using Branch Transformation Toolkit” on page 248.
However, in this section, a Java client is used instead of a HTML client, to
implement the presentation view. To invoke the Single Action EJB, an invoker for
a Java request is used instead of invoker using Struts.

This section explores the characteristics of BTT Visual Beans to facilitate the
development of operation views, besides exploring the characteristics of client
operations and ithe nvoker.

 Running H/F 1 431

This section shows how to create a view for the withdrawal operation and how
the operation and view are related. It also details the creation of an invoker to
implement the BeanInvokerForJavaRequest interface to invoke the Single Action
EJB (SAE) created in 8.3, “Developing an application using Branch
Transformation Toolkit” on page 248.

8.4.1 Rich Java client overview
Section 8.3.7, “Creating a Single Action EJB” on page 307, discussed client
operation, invoker, and server SAE strategy. The client operation formated data
and sent the context ID to the bean invoker, after which the invoker invoked a
constant Single Action EJB to process the withdrawal action, and sent the reply
data to the invoker. The invoker then sent the reply data to the client operation to
display it in the Java client view.

You saw in 8.3, “Developing an application using Branch Transformation Toolkit”
on page 248 a Single Action EJB named WithdrawalServerOp being built. Now,
you have to only build the following components:

� Client operation
� Bean invoker for Java request
� Java client view using a DSE VisualBean

The architecture is shown in Figure 8-167.

Figure 8-167 Architecture of our application

Client/Server Mechanism

Bean Invoker Pattern

BeanInvokerRegistry

ResourceBundle

BeanInvokerFactory

BeanInvoker

Java Request
Handler

Java
Presentation

Handler

HTTP

HTTP

EJB EJB

EJB EJB

Single Action
EJB

Java Client
(BTT V4.x)

Event
Manager
BTT V4.3

Event
Manager

JMS

432 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

In this sample application:

1. The Java Client is launched and data is gathered from the Java Client. On
clicking OK, the view launches the client operation defined in the DSE
Operation properties of the View panel.

2. The client operation then sends the operation data to the server in
serverOperation properties in the ClientOperation Externalize file
dseoper.xml.

3. In the server, based on the definitions in
com.ibm.btt.cs.invoker.base.BeanInvokerRegistryMapper.properties, use the
key identified by the client operation's serverOperation attribute to find the
corresponding property file and then instantiate the invoker defined in the
property file.

4. In the server, use the parseRequestData(String requestData) method in the
invoker to unformat the request data on to the SAE, which should have the
corresponding method to get the request data.

5. Run the invoker to execute the SAE.

6. In the server, use the processRespondData(Object ejbResult) method in the
invoker to format the reply data.

7. In the client, use the format identified by csReplyFormat to unformat the reply
data on to the client operation contex, and then fire an
OperationRepliedEvent.

8. When the event is fired, the operation panel refreshes the components inside
the panel with the operation context.

Figure 8-168 shows the steps discussed.

Figure 8-168 The application’s architecture

SystemData
• sessionID
• subSessionId
• InstanceId

Client Operation
• Bean Invoker
• Context

Client/Server
communication

Bean Invoker

Single Action EJB
• CHA

csRequestFormat

csReplyFormat

Java Client View
• DSE_operationName

 Running H/F 1 433

8.4.2 Creating the client operation
The client operation is responsible for performing cross validation of the data
received from the operation view, accessing local devices and sending the
operation to the server. In our sample, the client withdrawal operation does not
perform any extra processes in the client. It merely sends operation data to the
server. The Java view, described in 8.4.3, “Creating Java client using
VisualBeans” on page 442, launches this client operation.

To create client operation, perform the following tasks:

1. Open the Java perspective.

2. Highlight the BTTBankApplicationClient project in the appClientModule
folder.

3. Select File → Import → zip file.

4. Import the BTTBankAppClient.zip file located in c:\7160code\chap8.

If the file import is successful, the BTTBankApplicationClient project
hierarchy looks similar to Figure 8-169.

Figure 8-169 BTTBankApplicationClient After importing BTTBankAppClient.zip

434 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5. Right-click the BTTBankApplicationClient project and click Properties.

a. Select the Java Build Path list item in the Libraries tab.

b. Click Add External Jars, as shown in Figure 8-170.

Figure 8-170 Import external jars

 Running H/F 1 435

c. Add the dseb.jar, dsecss.jar, and dsecsm.jar files from
c:\7160code\chap8\BTT51Jars, as shown in Figure 8-171.

Figure 8-171 Import external jars

6. Click the Create a Java Package wizard in the toolbar, as shown in
Figure 8-172.

Figure 8-172 Create a new Java package named btt.bank.clientopertion

436 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

7. Name the package btt.bank.client.appl and click Finish as shown in
Figure 8-173.

Figure 8-173 New package wizard

 Running H/F 1 437

8. Create a new class named WithdrawalClientOperation extending
com.ibm.dse.base.DSEClientOperation, as shown in Figure 8-174.

Figure 8-174 Create WithdrawalClientOperation

9. In the class definition, import the contents of com.ibm.dse.base.*,
com.ibm.dse.clientserver, and com.ibm.dse.cs.servlet packages. These
packages contain the base Branch Transformation Toolkit classes and the
client/server support.

10.The WithdrawalClientOperation requires an execute() method. Perform the
following tasks:

a. Open WithdrawalClientOperation to its type hierarchy.

b. In the Hierarchy view, click Show All Inherited Members, as shown in
Figure 8-175 on page 439.

438 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-175 Show all inherited members of WithdrawalClientOperation hierarchy

 Running H/F 1 439

c. From the list of inherited members, right-click the execute method of
DSEClientOperation and select Override in
‘WithdrawalClientOperation’, as shown in Figure 8-176.

Figure 8-176 Override execute method in WithdrawalClientOperation

11.Write the WithdrawalClientOperation.execute() method, by performing the
following tasks:

a. Get the service named CSClient. This gets the client instance of
client/server service from the operation's context hierarchy.

b. Cast this service to CSClientService.

c. Use the service to invoke the synchronous sendAndWait(ClientOperation,
long) method. The first parameter is the client operation, "this". The
second parameter is a time-out in milliseconds. An appropriate value can
be 60000, or 60 seconds.

440 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

The entire WithdrawalClientOperation.java is shown in Example 8-37.

Example 8-37 WithdrawalClientOperation.java

/*
 * Created on 2005-12-6
 *
 * To change the template for this generated file go to
 * Window>Preferences>Java>Code Generation>Code and Comments
 */
package btt.bank.client.appl;

import com.ibm.dse.base.*;
import com.ibm.dse.clientserver.*;
import com.ibm.dse.cs.servlet.*;
import com.ibm.dse.base.DSEClientOperation;

/**
 * @author add
 *
 * To change the template for this generated type comment go to
 * Window>Preferences>Java>Code Generation>Code and Comments
 */
public class WithdrawalClientOperation extends DSEClientOperation {

/* (non-Javadoc)
 * @see com.ibm.dse.base.Operation#execute()
 */
public void execute() throws Exception {

// TODO Auto-generated method stub
super.execute();
((CSClientService)getService("CSClient")).sendAndWait(this,6000);

}

}

12.Save and close WithdrawalClientOperation.java.

13.Create a new class named StartupClientOp extending
com.ibm.dse.base.DSEClientOperation in the package btt.bank.client.appl.
As described in Step 8, override the execute method of DSEClientOperation
in StartupClientop. Import the com.ibm.dse.base.* package and the
com.ibm.dse.clientserver.* package. Implement the execute method of
StartupClientOp as shown in Example 8-38.

Example 8-38 Execute method of StartupClientOp

public void execute() throws Exception {
CSClientService csClientService=null;
setValueAt("TID",Settings.getTID());//$NON-NLS-1$

 Running H/F 1 441

csClientService=((CSClientService)getService("CSClient"));//$NON-NLS-1$
setValueAt("permanentConnectionForEvents",(new

Boolean(csClientService.getPermanentConnectionForEvents())).toString());
setValueAt("ipAddress",Settings.getIpAddress());
setValueAt("eventsPort",new Integer(csClientService.getEventsPort()));
csClientService.sendAndWait(this,40000);

}

14.Externalize the client operation data by performing the following tasks:

a. Open the dseoper.xml file.

b. Create your client operation with the values shown in Example 8-39.

Example 8-39 withdrawalClientOperation

<operation context=”withdrawalClinetCtx”
id=”withdrawalClientOp”
impClass=”btt.bank.client.appl.WithdrawalClientOperation”
serrverOperation=”withdrawalServerOp”>
<refFormat name=”csRequestFormat” refId=”withdrawalCSRequestFmt”/>
</operation>

8.4.3 Creating Java client using VisualBeans
This section describes how to create a Java client view to launch the client
operation.

To construct the Java client view, use DSE VisualBeans and some standard
WebSphere Studio Application Developer visual parts such as Swing
components. Using Branch Transformation Toolkit VisualBeans in the
WebSphere Studio Application Developer environment requires a simple setup
to be in place beforehand.

This section first looks at setting up the visual composition environment, and then
at creating a Java View named WithdrawalView.

Setting up the WebSphere Studio environment

.To set up DSE VisualBeans environment, perform these tasks:

1. Open WebSphere Studio Application Developer.

2. Open the Java perspective and select BTTBankApplicationClient →
appClientModule.

a. Select File → Import → ZIP file → Next.

b. Import the DseGuiBeans.zip file located in the src directory of the visual
beans plug-in, that is, [drive]:\[WebSphere Studio Application

442 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Developer_install_dir]\wstools\eclipse\plugins\com.ibm.dse.guibeans_5.1.
0\src).

c. Click Select All and then Finish, as shown in Figure 8-177.

Figure 8-177 Import DSEGuiBeans into BTTBankApplicationClient

d. Select the SPColorEditor.Java class in the com.ibm.dse.gui package.
Right-click SPColorEditor.Java and select Source → Organize Imports.
Save and close.

3. The GUI beans have to access information from your client's initialization file.
Therefore, make sure that dse.ini is visible:

a. Open the BTTBankApplicationClient->appClinetModule project in the
settings.properties file.

 Running H/F 1 443

b. Check the DSEINIDevelopmentPath property. It must point to the dse.ini
file in your client project workspace, for example:

DSEINIDevelopmentPath =
[WORKSAPCE_DIR]\\BTTBankApplicationClient\\appClientModule\\dse.ini

c. Open the BTTBankApplicationClient project in the appClientModule
folder in the dse.ini file. Modify the entities property in your dse.ini file so
that your visual beans can access the proper externalized XML files, for
example:

<field id="entities" value=".\"/>

4. In the Java perspective, right-click the BTTBankApplicationClient project
and select Properties → Java Build Path → Libraries tab.

a. Click Add Library. This calls the Add library dialog box.

b. Select DSE VisualBeans.

See Figure 8-178.

Figure 8-178 Add DSE VisualBeans to application

c. Click Next. The new library of Visual Components is displayed as shown
in Figure 8-179 on page 445.

d. Click Finish.

444 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-179 Add Library

e. Click OK. The Add Library Wizard adds a container to the build path.
When the you open the Java Visual Editor, the categories defined in the
XMI file will be added at the top of the palette. You can then drop
JavaBeans into the visual canvas without having to use the VisualEditor's
Choose Bean dialog.

f. If there are any problems with your plug-in, such as not appearing in the
list of containers for the project, it may mean that errors have occurred in
the plug-in’s XML file. WebSphere Studio Application Developer writes
these errors in the [WebSphere Studio Application
Developer_install_dir]\workspace\.metadata\.log file.

Creating the operation view

This section describes how to create a Java view to launch the operation. To
perform the operation, you should provide some input data such as the branch
identifier, the account number, the operation date, and the amount. You should

 Running H/F 1 445

expect the new balance and a transaction error message or just the transaction
error message to be returned.

The view you create now will appear as shown in the Figure 8-180. It can be
personalized.

Figure 8-180 WithdrawalView

446 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

To build the view that can manage the data, perform the following tasks:

1. In BTTBanckApplicationClient in appClientModule in btt.bank.client.appl
package, create a new class named WithdrawalView, as shown in
Figure 8-181, and which extends com.ibm.dse.gui.OperationPanel.

Figure 8-181 Create WithdrawalView

2. Open the class to visual composition by right-clicking
BTTBankApplicationClient and selecting appClientModule →
btt.bank.client.appl → WithdrawalView, and selecting Open With →
Visual Editor. Make sure this class is not open in any other Java editor.
Close that editor, if needed. Once opened, all the properties belonging to a
visual element selected is displayed in the right-hand side of the Properties
view. Select the operation panel, which is now a plain, gray box, and set the

 Running H/F 1 447

following properties, as shown in Figure 8-182 on page 448 and Figure 8-183
on page 449:

– Name: btt.bank.client.appl.WithdrawalView.
– DSE_operationName: withdrawalClientOp
– DSE_title: OperationsView

Figure 8-182 Set name to btt.bank.client.appl.WithdrawalView

448 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-183 Set DSE_operationName

3. You can see a palette of DSE Visual Beans on the left side of the Visual
Composition Editor, as shown in Figure 8-184.

Figure 8-184 DSE VisualBeans

 Running H/F 1 449

4. Add an SpLabel to represent the Customer Name field as shown in
Figure 8-185.

– Change the name to vbCustomerName.

Figure 8-185 Add a SpLabel to operationPanel and change name

– Set the DSE_dataName property from the Context Path to CustomerName.
In the Properties view, click DSE_dataName Item. A dialog box as shown

Note: If you do not have or cannot find this palette of beans, construct your
view using the Choose Bean item.

450 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

in Figure 8-186 opens. Select the Context Path radio button,
withdrawalClientCtx item, and CustomerName.

Figure 8-186 Set DSE_DataName

 Running H/F 1 451

– Add a javax.swing.JLabel for the previous SpLabel. Change the text
property to Customer Name, as shown in Figure 8-187.

Figure 8-187 Add JLabel to OperationPanel and change text

5. Add SpComboBox to represent the selection of Account Numbers.

– Change the name to vbAccountName.
– Set the DSE_dataName property from the context path to AccountNumber.
– Set the DSE_dataNameForList property to accountListData.

6. Add a javax.swing.JLabel for the previous SpComboBox. Change the text
property to Select Account Number:.

7. Add a SpTextField to represent the Amount field:

– Change the name to vbAmount.
– Set the DSE_mandatory attribute to true.
– Set the DSE_autoTab attribute to true.
– Set the DSE_maxChars attribute to 5.
– Set the DSE_dataName to Amount.

452 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

– Set the DSE_formatter to FloatFormatter. Inside the DataFormatter
attribute specifications, set the appropriate error message you want the
system to display when a validation error occurs. You can also set the
default thousands/decimal separators.

8. Add a javax.swing.JLabel for the previous SpTextField. Change the text
property to Amount:.

9. Add a SpLabel to represent the new balance after performing the operation.

– Change the name to vbAccountBalance.
– Set the DSE_dataName attribute to AccountBalance.

10.Add a javax.swing.JLabel for the previous SpLabel. Change the text
property to Balance:.

11.Add a com.ibm.dse.gui.SpErrorList to the OperationPanel. Change the
beanName to vbErrorList. This bean will display validation errors during the
data input process that occurs in any of the OperationPanel components,
including withdrawal validation class messages. Make sure your error list is
large enough to display long messages. Multiple error messages can be
displayed.

12.Add a javax.swing.JLabel for the previous SpErrorList. Change the text
property to Error messages:.

13.Add an SpButton.

– Change the beanName name to vbWithdrawal.
– Set the text attribute to OK.
– Set the DSE_type to OK. When you click OK, it executes the withdrawal

operation.

14.Save the bean and run it. Although the view does not really do anything at this
point, notice that when the mandatory fields are missing or when the formats
are not correct, OK is disabled.

15.Add another SpButton.

– Change the beanName to vbClose.
– Set the text attribute to Close.
– Set the DSE_type to Close. When you click Close, it will close the

operation view.

16.A summary of the VisualBeans to be added to your view is shown in Table 8-8
and Table 8-9.

Table 8-8 DSE components

DSE visual beans Properties

SpLabel beanName:vbCustomerName
DSE_dataName:CustomerName

 Running H/F 1 453

Table 8-9 Swing components

8.4.4 Connecting the view to the operation
To link the client operation to the view, the following tasks need to be complete:

� Defining the fields in view, that will interact with the operation. This task was
completed when you set the DSE_dataName properties of the components in
the OperationPanel.

� Setting the operation attribute of the view with the client operation
instance.This too was done when you specified the DSE_operationName
property of the OperationPanel.

SpComboBox beanName:vbAccountNumber
DSE_dataName:AccountNubmer
DSE_dataNameForList:accountListData

SpTextField beanName:vbAmount
DSE_dataName:Amount
DSE_mandatory:true
DSE_autoTab:true
DSE_maxChar:5
DSE_formatter:FloatFormatter

SpLabel beanName:vbAccountBalance
DSE_dataName:AccountBalance

SpErrorList beanName:vbErrorList

SpButton beanName:vbWithdrawal
text:OK
DSE_type:ok

SpButton beanName:vbClose
text:Close
DSE_type:close

Swing beans Properties

JLabel text:Customer Name:

JLabel text:Select Account Nubmer:

JLabel text:Amount:

JLabel text:Available Balance:

JLabel text:Error Messages:

DSE visual beans Properties

454 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

� Notifying the view when the operation execution is finished. You may have
noticed that when carrying out visual composition, you were setting the
attribute DSE_dataName of the input and output components as the ID of the
fields from the operation context. This is all that you require to define which
fields will interact with the operation context.

In order to create a client operation instance, initialize the Branch Transformation
Toolkit environment. In this sample, since you are working in a client/server
environment, initialize the complete Branch Transformation Toolkit client
environment. To do this, use the initialize() method of the view that has been
automatically created.

1. Navigate to the class declaration of the WithdrawalView (right-click it and
select Open With → Java Editor), add a statement to import the contents of
the com.ibm.dse.base package, as shown in Example 8-40.

Example 8-40 Add import class

...
import java.io.BufferedInputStream;
import com.ibm.btt.dse.base.*;
import com.ibm.dse.clientserver.CSClientService;
...

2. Create a new method named initEnv() in the class WithdrawalView that
throws Exception. This method initializes the entire Branch Transformation
Toolkit client environment.The source code is shown in Example 8-41.

Example 8-41 Add method initEnv

...
private void initEnv() throws Exception{

String iniPath =
"http://127.0.0.1:9080/BTTBankAppClientWeb/dse/dse.ini";//$NON-NLS-1$

Context.reset();
Settings.reset(iniPath);
Settings.initializeExternalizers(Settings.MEMORY);
Context context= (Context)Context.readObject("workstationCtx");
System.out.println(context);
System.out.println(context.getService("CSClient"));
((CSClientService) context.getService("CSClient")).establishSession();
ClientOperation anOp =

(ClientOperation)DSEOperation.readObject("startupClientOp");
anOp.execute();

}
...

 Running H/F 1 455

3. Add a call to this method in initialize() at the top of the method. See
Example 8-42.

Example 8-42 Add method initEnv() into initialize()

//user code begin {1}
try{

initEnv();
}catch(Exception e){

System.out.println(e.toString());
}
//user code end

4. Use the refresh method to update the visual components at the end of the
method. See Example 8-43.

Example 8-43 Add refresh method into initialize method

// user code begin {2}
refresh();
// user code end

This step is necessary if you require interaction between the view
components and the operation when the operation execution is completed. In
this sample, the view should get the AccountBalance and the
TrxErrorMessage values when the operation finishes.

After you have completed step 3 and step 4, the initialize() method will look as
shown in Example 8-44.

Example 8-44 Initialize method

private void initialize() {
//user code begin {1}
try {

initEnv();
} catch (Exception e) {

// TODO Auto-generated catch block
System.out.println(e.toString());

}
//user code end
this.add(getSpLabel(), null);
this.add(getJLabel(), null);
this.add(getJLabel1(), null);
this.add(getSpComboBox(), null);
this.add(getJLabel2(), null);
this.add(getJLabel3(), null);
this.add(getJLabel4(), null);
this.add(getSpTextField(), null);
this.add(getSpButton(), null);

456 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

this.add(getSpButton1(), null);
this.add(getSpErrorList(), null);
this.add(getSpLabel1(), null);
this.setSize(342, 276);
this.setName("labs.WithdrawalView");
this.setOperationName("withdrawalClientOp");
this.setTitle("OperationsView");

//user code begin {2}
refresh();
//user code end

}

5. Make the operation fire an event when the execution is complete. To
accomplish this, add the following line at the end of the client operation
(btt.bank.client.appl.WithdrawalClientOperation) execute method:

fireHandleOperationRepliedEvent(new OperationRepliedEvent(this));

The operation panel knows that when it executes the operation, that is, when
you click OK, it has to wait for this event. When the event is fired, the
operation panel refreshes the components inside the panel with the operation
context.

8.4.5 Displaying the operation messages
This step is useful if you want to display the error messages of the business
operation. The messages written in the WithdrawalValidate class will be
displayed in the bean SpErrorList.

1. Select Java perspective → BTTBankApplicationClient →
appClientModule → btt.bank.client.appl package. In this package, create a

 Running H/F 1 457

class named WithdrawalValidate implementing
com.ibm.dse.base.OperationXValidate, as shown in Figure 8-188.

Figure 8-188 Create WithdrawalVlidate class

2. To implement this interface, use the xValidate(Context) method. Your
xValidate(Context arg0) code should:

a. Declare a string array that contains the error messages and declare a float
variable, as shown in Example 8-45.

Example 8-45 Declare a string array to contain error messages

String [] errorMessages = new String[5];
java.util.Date date = new java.util.Date();
Float amount = new Float("0");

b. Set the data value in the context as shown in Example 8-46 on page 459.

458 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Example 8-46 Set data value in the context

try {
arg0.setValueAt("Date", date);

}catch(Exception e){
errorMessages[0] = "Invalid date";
errorMessages[1] = "Date must be a valid dd/mm/yy date";
return errorMessages;

}

c. Get the Amount value from the context and if the value is true, return null.
However, if there is an exception, return the error messages list. See
Example 8-47.

Example 8-47 Get amount value

try{
String strAmount=((Object) arg0.getValueAt("Amount")).toString();
amount = new Float(strAmount);
if (amount.intValue() > 5000) {

errorMessages[0] = "Field amount greater than 5000";
errorMessages[1] = "Input a new amount";
return errorMessages;

}
}catch(Exception e){

errorMessages[0] = "Invalid field";
return errorMessages;

}

return null;

3. The WithdrawalValidation class will look as shown in Example 8-48.

Example 8-48 WithdrawalValidation.java

/*
 * Created on 2005-12-7
 *
 * To change the template for this generated file go to
 * Window>Preferences>Java>Code Generation>Code and Comments
 */
package btt.bank.client.appl;

import com.ibm.dse.base.Context;
import com.ibm.dse.base.DataField;
import com.ibm.dse.base.OperationXValidate;
import com.ibm.dse.base.types.DSETypeException;

/**

 Running H/F 1 459

 * @author addd
 *
 * To change the template for this generated type comment go to
 * Window>Preferences>Java>Code Generation>Code and Comments
 */
public class WithdrawalValidate implements OperationXValidate {

/**
 *
 */
public WithdrawalValidate() {

super();
// TODO Auto-generated constructor stub

}

/* (non-Javadoc)
 * @see

com.ibm.dse.base.OperationXValidate#xValidate(com.ibm.dse.base.Context)
 */
public String[] xValidate(Context arg0) {

String [] errorMessages = new String[5];
java.util.Date date = new java.util.Date();
Float amount = new Float("0");
try {

arg0.setValueAt("Date", date);
}catch(Exception e){

errorMessages[0] = "Invalid date";
errorMessages[1] = "Date must be a valid dd/mm/yy date";
return errorMessages;

}
try{

String strAmount=((Object) arg0.getValueAt("Amount")).toString();
amount = new Float(strAmount);
if (amount.intValue() > 5000) {

errorMessages[0] = "Field amount greater than 5000";
errorMessages[1] = "Input a new amount";
return errorMessages;

}
}catch(Exception e){

errorMessages[0] = "Invalid field";
return errorMessages;

}

// TODO Auto-generated method stub
return null;

}

/* (non-Javadoc)

460 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

 * @see com.ibm.dse.base.OperationXValidate#validate(java.lang.String,
com.ibm.dse.base.DataField, com.ibm.dse.base.Context)

 */
public void validate(String arg0, DataField arg1, Context arg2)

throws DSETypeException {
// TODO Auto-generated method stub

}

}

4. Modify withdrawalClientOperation defined in Java Perspective →
BTTBankApplicationClient → appClientModule → dseoper.xml to include
the reference to this validation class. See Example 8-49.

Example 8-49 withdrawalClientOperation

<operation
context="withdrawalClientCtx"
id="withdrawalClientOp"
serverOperation="withdrawalServerOp"
impClass="btt.bank.client.appl.WithdrawalClientOperation"
xVal="labs.WithdrawalValidate">
......

8.4.6 Creating the invoker
Instantiated by the Bean Invoker Factory, invokers enables Struts actions or
Java request handlers to access business processes and Single Action EJBs
through an EJB call.

When a request comes from a requester, which could be a request handler or a
Struts action, the request brings a request ID and a session ID to the Bean
Invoker Factory. The request ID indicates what kind of transaction the client is
requesting, and the session ID identifies the session of this transaction request.
The Bean Invoker Factory generates or allocates an invoker with the request ID
and session ID. The Bean Invoker Factory then returns the invoker to requester
so that the requester can send the request to the application logic layer.

 Running H/F 1 461

Bean invoker pattern

This section describes some common ways that you can work with invoker
beans.

� Invoker bean overview

– EJB methods are strongly typed and each EJB has its own corresponding
access information. In order to provide a generic way to access EJB,
invocation architecture is required.

– The logic for creating Bean Invoker and bean invocation logic are
encapsulated within the Bean Invoker. Developers may invoke EJB
through a Bean Invoker with a generic interface.

– The composition of Bean Invoker Pattern includes Bean Invoker Factory,
Basic Invoker Class (super class), end-user extended Bean Invoker class
and Bean Invoker Registry.

The Bean Invoker Pattern is shown in Figure 8-189.

Figure 8-189 Invoker pattern architecture

� Base invoker class

– This is the abstract class that encapsulates some basic functions about
EJB accessing and cache mechanism.

Bean Invoker Pattern

Invoker Pool

EJB EJB

EJB EJB

Single Action
EJB

Bean
Invoker
Factory

Invoker
Registry

Invoker
Object

Invoker
Object

EJB Proxy Cache

EJB
Proxy

EJB
Proxy

requestID

462 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

– It also provides all the format/unformat functions, for example,
StringFormatter, XMLFormatter, FloatFormatter, and so on.

– Each bean invoker should be extended from the base invoker class. You
should manually modify it for each EJB method accessed.

� Interface for channels

– Different channels should implement different invoker interfaces. The
defaults are:

• BeanInvokerForJavaRequest:parseRequestData(String requestData)
• BeanInvokerForStrutsAction:parseRequestData(Context requestData)

� End-user extended invoker

– For each EJB method in Single Action EJB, the end-user must extend the
super invoker class. The logic for accessing the EJB method is defined in
this extended class.

– executeEJB() should be overridden by the end-user.

– End-user extended invoker implements different interfaces according to
the channels that use the Bean Invoker.

� Bean Invoker Factory

– This is responsible for the Bean Invoker life cycle.

– Only one instance of Bean Invoker Factory should be available in a JVM
(Factory Pattern).

– Bean Invoker Factory maintains the invoker object cache and EJB proxy
object cache.

– Exception handling.

� Bean Invoker Pool

– It is used to store Bean Invoker Object.
– It improve performance with caching.

� Bean Proxy Cache

– It stores EJB Proxy Object.
– It improves performance with EJB interaction.
– It is session-relevant.
– Session timeout handling

� Bean Invoker Registry (see Figure 8-190 on page 464)

– This is a resource bundle that stores the information that is required for
creating a Bean Invoker.

– Each type of Bean Invoker should have its corresponding registry file.

– It links a request ID to a given resource bundle name.

 Running H/F 1 463

– There are two ways of accessing resource bundle file: ResourceBundle
mode and Properties file mode.

Figure 8-190 Invoker Registry

Creating the Withdrawal invoker

To create the Withdrawal invoker, perform the following tasks:

1. Import a Web project for building the Invoker.

a. From the WebSphere Studio Application Developer menu, select File →
Import.

b. In the dialog box that opens, select WAR file and click Next.

c. From WAR file field, browse to the directory
c:\7160code\cha8\BTTBankAppClientWeb.war.

d. For the Project field, click New... to create a New Dynamic Web Project
named BTTBankAppClientWeb, whose EAR project should be set as

Invoker Registry

BeanInvokerRegistry
Mapper.properties

requestID

#startupServerOp.properties
implClass=com.ibm.dse.samples.appl.StartupServerInvoker
jndiName=ejb/com/ibm/shanjh/cstest/StartupServerActionHome
factory=com.ibm.websphere.naming.WsninitialContextFactory
location=iiop://localhost:2809
homeClassName=com.ibm.cstest.StartupServerActionHome
isLocal=false

HelloWorld=/properties/HelloWorld.properties:PROP
startupServerOp=com.ibm.btt.cs.invoker.base.startupServerOp:RB

464 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

BTTBank by selecting the Configure advanced options check box and
clicking Next, as shown in Figure 8-191.

Figure 8-191 Import EAR and new BTTBankAppClientWeb

 Running H/F 1 465

e. Set the EAR project as BTTBank, and click Finish. Click OK in the pop-up
window, as shown in Figure 8-192.

Figure 8-192 New BTTBankAppClientWeb

f. Click Finish in the Import Dialog boxto complete the Web Project Import.

g. Right-click the Web project BTTBankAppClientWeb, and select
Properties. In the pop-up window, select Java Build Path in the left
navigation panel, and the Projects tab in the right panel. Check
BTTBankEJB project. Click OK. This step can fix the errors in the
BTTBankAppClientWeb Web project.

2. In J2EE perspective, right-click BTTBankAppClientWeb project, and select
Java Resources. Click New → Package to create a package named
withdrawalServerOp.invoker.java.

3. Right-click BTTBankAppClientWeb project and select Java Resources →
withdrawalServerOp.invoker.java. Select New → Class to create a Java
class named WithdrawalServerOpInvoker which extends the super class
com.ibm.btt.cs.invoker.base.BeanInvokerImpl and implements the interface

466 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

com.ibm.btt.cs.invoker.base.BeanInvokerForJavaRequest, as shown in
Figure 8-193.

Figure 8-193 New class WithdrawalServerOpInvoker

4. Add code to class WithdrawalServerOpInvoker.java.

a. Add import class as shown in Example 8-50.

Example 8-50 Import class of WithdrawalServerOpInvoker

import com.ibm.btt.base.Context;
import java.util.Hashtable;
import javax.ejb.EJBHome;
import com.ibm.btt.base.BTTSystemData;
import com.ibm.btt.base.Constants;
import com.ibm.btt.base.DSEInvalidArgumentException;
import com.ibm.btt.base.DSEInvalidRequestException;
import com.ibm.btt.base.DSEObjectNotFoundException;

 Running H/F 1 467

import com.ibm.btt.cs.invoker.base.*;
import com.ibm.btt.cs.servlet.CSConstants;
import javax.naming.InitialContext;
import btt.bank.business.logic.*;

b. Add code to the method parseRequestData(String arg0), which uses
BeanInvokerFormatter instance to unformat the request data and put the
result into a hashtable, as shown in Example 8-51.

Example 8-51 WithdrawalServerOpInvoker.parseRequestData()

try {
//** Prepare session data in ejb parameters
getEjbParameters().put(Constants.SESSION_ID,

getSystemData().getSessionId());
getEjbParameters().put(CSConstants.DATAAPPLICATIONIDKEY,

getSystemData().getSubsessionId());

//** Get BranchId value from request data
Tokenizer tokens = getDelimitedTokenizer(arg0); //The arg0 is request data
BeanInvokerFormatter formatter = getFormatter();

String s = formatter.unformatString((String)tokens.nextToken("#"),null);
getEjbParameters().put("BranchId", s);

//** Get AccountNumber value
s = formatter.unformatString((String)tokens.nextToken("#"),null);
getEjbParameters().put("AccountNumber", s);

//** Get Date value
java.util.Date aDate =

formatter.unformatDate((String)tokens.nextToken("#"),true,"ymd",true,"/");
getEjbParameters().put("Date", aDate);

//** Get Amount value
Float amt = (Float) formatter.unformatFloat((String)tokens.nextToken("#"));
getEjbParameters().put("Amount", amt);

} catch (Exception e) {
throw new DSEInvalidRequestException(Constants.COMPID, "", e.getMessage());

}

c. Add code to the method processRespondData(Object arg0), which uses
BeanInvokerFormatter instance to format the SAE execution result to a
string for client withdrawal operation, as shown in Example 8-52.

Example 8-52 WithdrawalServerOpInvoker.processRespondData()

Hashtable haResult = (Hashtable)arg0;//The arg0 is SAE execution result.
BeanInvokerFormatter formatter = getFormatter();

468 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

//Build a string
String responseString = "";
try {

responseString =
formatter.formatString((String)haResult.get("TrxReplyCode"), null);

responseString = formatter.addDelimiter(responseString, "#");

responseString +=
formatter.formatNumericString((String)haResult.get("AccountBalance"));

responseString = formatter.addDelimiter(responseString, "#");

responseString +=
formatter.formatString((String)haResult.get("TrxErrorMessage"), null);

responseString = formatter.addDelimiter(responseString, "#");
} catch (Exception e) {

throw new DSEInvalidRequestException(Constants.COMPID, "", e.getMessage());
}
return responseString;

d. Add code to the method createBeanInvokerProxy(), which creates an SAE
instance, as shown in Example 8-53.

Example 8-53 WithdrawalServerOpInvoker.createBeanInvokerProxy()

WithdrawalServerOp bean = null;
WithdrawalServerOpHome home = null;
try {

home = (WithdrawalServerOpHome)this.getHomeObject();
bean = (WithdrawalServerOp) home.create();

} catch (Exception e) {
throw new DSEInvalidRequestException(Constants.COMPID, "", e.getMessage());

}

return bean;

e. Add code to the method executeEJB(), which uses the created SAE
instance to execute the method in SAE and get results, as shown in
Example 8-54.

Example 8-54 WithdrawalServerOpInvoker.executeEJB()

WithdrawalServerOp bean = (WithdrawalServerOp) getBeanInvokerProxy();
Hashtable result = (Hashtable)bean.execute(getSystemData(),getEjbParameters());
return result;

f. Save and close the Java Editor for withdrawalServerOpInvoker.

 Running H/F 1 469

5. Create a property file named withdrawalServerOpOP.properties in the
package withdrawalServerOp.invoker.java.

a. Right-click BTTBankAppClient Web project, and select Java
Resources → withdrawalServerOp.invoker.java package. Click
New → Other.

b. In the dialog box, select Simple in the left navigation panel, and File in the
right panel, as shown in Figure 8-194, and click Next.

Figure 8-194 Create a simple file

c. The value in the parent folder field should be
BTTBankAppClientWeb/JavaSource/withdrawalServerOp/invoker/java,

470 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

then type withdrawalServerOpOP.properties in the File name field. Click
Finish, as shown in Figure 8-195.

Figure 8-195 New withdrawalServerOpOp.properties file

 Running H/F 1 471

d. Add some definitions to withdrawalServerOpOP.properties as shown in
Example 8-55.

Example 8-55 withdrawalServerOpOp.properties

implClass=withdrawalServerOp.invoker.java.WithdrawalServerOpInvoker
jndiName=ejb/btt/bank/business/logic/WithdrawalServerOpHome
factory=com.ibm.websphere.naming.WsnInitialContextFactory
location=iiop://localhost:2809
homeClassName=btt.bank.business.logic.WithdrawalServerOpHome
isLocal=false
csReplyFormat=withdrawalRepFmt

e. Based on the above definitions in the property file, the Invoker component
can find and instance
withdrawalServerOp.invoker.java.WithdrawalServerOpInvoker. Save, and
close the Java Editor.

6. Open BTTBankAppClientWeb project and select Java Resources →
com.ibm.btt.cs.invoker.base package →
BeanInvokerRegistryMapper.properties with Properties File Editor. Add
the code shown in Example 8-56 in a new line.

Example 8-56 BeanInvokerRegistryMapper.properties

withdrawalServerOp=withdrawalServerOp.invoker.java.withdrawalServerOpOp:RB

7. Save, and close the Properties File Editor.

8.4.7 Running this application
To run this application, perform the following tasks:

1. From WebSphere Studio Application Developer menu select Project →
Rebuild All.

2. Open the Server perspective.

3. In the Server Configuration view, right-click Servers and select WBI SF.
Select Start.

4. Once the WBI SF server is started, switch to the Java perspective and select
WithdrawalView.java from the BTTBankApplicationClient project. From the
WebSphere Studio Application Developer menu, select Run → Run.

472 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

5. In the dialog box, select Java Bean and click New in the left panel, as shown
in Figure 8-196.

Figure 8-196 Run template

6. Click Run. After a couple of moments, a Java client window is displayed as
shown in Figure 8-197.

 Running H/F 1 473

Figure 8-197 The input view

7. You can modify the Account Number or Amount. If you click OK, a window
opens, as shown in Figure 8-198.

Figure 8-198 The result view

8. During the execution, a messageis displayed in the console shown in
Figure 8-199 on page 475.

474 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Figure 8-199 Console showing message

.

 Running H/F 1 475

476 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Appendix A. Branch Transformation
Toolkit development and
runtime requirements

When using Branch Transformation Toolkit to develop a new application or
migrate an existing one, prepare the runtime and development environments to
meet the requirements. This appendix lists the environment requirements for the
runtime and development environments of Branch Transformation Toolkit 5.1.

Branch Transformation Toolkit 5.1 supports the following operating systems:

� Microsoft Windows 2000

– Microsoft Windows 2000 Professional with Service Pack 4
– Microsoft Windows 2000 Server with Service Pack 4
– Microsoft Windows 2000 Advanced Server with Service Pack 4

� Microsoft Windows XP

– Microsoft Windows XP Professional with Service Pack 1

� Microsoft Windows Server 2003

– Microsoft Windows Server 2003, Standard
– Microsoft Windows Server 2003, Enterprise

A

© Copyright IBM Corp. 2006. All rights reserved. 477

� Sun Solaris

– Sun Solaris 8 with the Recommended Patch Cluster of November 2003
– Sun Solaris 9 with the Recommended Patch Cluster of November 2003

� Red Hat Linux on Intel

– RedHat Linux v7.2
– RedHat Linux v8.0
– RedHat Linux v9.0
– Red Hat Enterprise Linux WS 3.0 Update 1 or 3
– Red Hat Enterprise Linux AS 3.0 Update 1 or 3
– Red Hat Enterprise Linux ES 3.0 Update 1 or 3

� IBM AIX

– AIX Version 5.1 with the 5100-05

– AIX Version 5.2 with the 5200-01 recommended maintenance package
and APAR iY44183, and PTF U484272

– AIX Version 5.2 with 5200-03 recommended maintenance package

– AIX 5LTM version 5.3 with WebSphere Application Server APAR PK01428

� IBM z/OS

– IBM z/OS 1.2 or later

Some differences exist between development environments and runtime
environments.

478 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

A.1 Microsoft Windows 2000
For Windows 2000 client side, the minimum requirements of runtime
environment are listed in Table A-1.

Table A-1 Windows 2000 client requirements

The minimum requirements of server side are listed in Table A-2.

Table A-2 Windows 2000 server requirements

Windows 2000 client side Requirement description

Processor PII 266 MHz or higher

Memory 48 MB minimum /64 MB recommended

Hard drive 50 M

Display 800 x 600 minimum / 1024 x 768
recommended

Intranet test LAN base 16 MB token ring / 100 MB BaseTx
Ethernet recommended

Operating system Microsoft Windows 2000 Professional with
Service Pack 4

Browser One of the following is required:

� Netscape Communicator 7.02 or later
with JavaTM Plug-in 1.3.1 or later

� Internet Explorer 6.0 SP1

Communication protocol TCP/IP

JDK JavaTM 2 SDK supplied by WebSphere
Application Server

Windows 2000 server side Requirement description

Processor PIII 500 MHz or higher

Memory 512 MB minimum / 768 MB recommended

Hard drive 100 MB minimum

Intranet test LAN base 16 MB token ring / 100 MB BaseTx
Ethernet recommended

 Appendix A. Branch Transformation Toolkit development and runtime requirements 479

Operating System One of the following is required:

� Microsoft Windows 2000 Advanced
Server with Service Pack 4

� Microsoft Windows 2000 Server with
Service Pack 4

Application server One of the following is required:

� IBM(R) WebSphere Application
Server - Express V5.1.1

� IBM WebSphere Application Server
V5.1.1

� IBM WebSphere Application Server
Network Deployment V5.1.1

� IBM WebSphere Application Server
For Developers V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1 for
Multiplatforms

Communication protocol TCP/IP

Communication services (LU0, LU6.2) IBM Communications Server V6.1.2

Database manager One of the following is required:

� DB2 UDB Enterprise Server Edition
v8.1 FP5 or FP7

� DB2 UDB Enterprise Server Edition
v8.2

� Oracle 8i Standard/Enterprise
Release 3 V8.1.7.4

� Oracle 9i Standard/Enterprise
Release 2 V9.2.0.5

� Microsoft SQL Server 2000 Enterprise
SP3

� Microsoft SQL Server 2000 Standard
Edition

Portal Connector IBM WebSphere Portal for Multiplatforms
V5.1

Windows 2000 server side Requirement description

480 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

For the Windows 2000 development environments, the minimum requirements
are listed in Table A-3.

Table A-3 Windows 2000 development requirements

A.2 Microsoft Windows XP requirements
For Windows XP, Table A-4 lists the requirements of client side of runtime
environment.

Table A-4 Windows XP client requirements

Windows 2000 development Requirement description

Processor PIII 500 MHz or higher recommended

Memory 1024 MB recommended

Hard drive 2 GB minimum for WebSphere Studio
Application Developer; 4.5 GB minimum
for WebSphere Studio Application
Developer Integration Edition

Display TCP/IP

Operating system 100 MB Ethernet recommended

Integrated development environment One of the following is required:

� IBM WebSphere Studio Application
Developer V5.1.1

� IBM WebSphere Studio Application
Developer Integration Edition V5.1.1

Browser � Netscape Communicator 7.02 or later
with Java Plug-in 1.3.1 or later

� Internet Explorer 6.0 SP1

Windows XP client side Requirement description

Processor PII 266 MHz or higher

Memory 48 MB minimum /64 MB recommended

Hard drive 50 MB

Display 800 x 600 minimum / 1024 x 768
recommended

Intranet test LAN base 16 MB token ring / 100 MB BaseTx
Ethernet recommended

 Appendix A. Branch Transformation Toolkit development and runtime requirements 481

Table A-5 lists the requirements for development environment.

Table A-5 Windows XP development requirements

Operating system Windows XP Professional with SP1

Browser Any of the following:

� Netscape Communicator 7.02 or later
with Java Plug-in 1.3.1 or later

� Internet Explorer 6.0 SP1

Communication protocol TCP/IP

JDK Java 2 SDK supplied by WebSphere
Application Server

Windows XP development Requirement description

Processor PII 500 MHz processor. PIII 500 MHz or
higher recommended

Memory 1024 MB recommended

Hard drive 2 GB minimum for WebSphere Studio
Application Developer; 4.5 GB minimum
for WebSphere Studio Application
Developer Integration Edition

Display 800 x 600 minimum / 1024 x 768
recommended at a color setting of High
Color (16 bit)

Operating system Windows XP Professional with SP1

Integrated development environment One of the following is required:

� IBM WebSphere Studio Application
Developer V5.1.1

� IBM WebSphere Studio Application
Developer Integration Edition V5.1.1

Browser � Netscape Communicator 7.02 or later
with Java Plug-in 1.3.1 or later

� Internet Explorer 6.0 SP1

Windows XP client side Requirement description

482 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

A.3 Microsoft Windows Server 2003 requirements
Table A-6 lists the requirements of server side of runtime environment for
Windows Server 2003.

Table A-6 Windows 2003 server runtime requirements

Windows 2003 server side Requirement description

Processor PII 500 MHz or higher

Hard drive 100 MB minimum

Memory 512 MB minimum / 768 MB recommended

Operating system One of the following is required:

� Windows Server 2003 Standard

� Windows Server 2003 Enterprise

Application server One of the following is required:

� IBM WebSphere Application Server -
Express V5.1.1

� IBM WebSphere Application
Server V5.1.1

� IBM WebSphere Application Server
Network Deployment V5.1.1

� IBM WebSphere Application
Server For Developers V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1 for
Multiplatforms

Communication protocol TCP/IP

Communication services (LU0, LU6.2) IBM Communications Server V6.1.2

 Appendix A. Branch Transformation Toolkit development and runtime requirements 483

A.4 Linux on Intel requirements
Table A-7 lists the requirements of client side for Linux on Intel platforms.

Table A-7 Linux on Intel client requirements

Database manager One of the following is required:

� DB2 UDB Enterprise Server Edition
v8.1 FP5 or FP7

� DB2 UDB Enterprise Server Edition
v8.2 v Oracle 8i Standard/Enterprise
Release 3 V8.1.7.4

� Oracle 9i Standard/Enterprise
Release 2 V9.2.0.5

� Microsoft SQL Server 2000 Enterprise
SP3

� Microsoft SQL Server 2000 Standard
Edition

Portal Connector IBM WebSphere Portal for Multiplatforms
V5.1

Windows 2003 server side Requirement description

Linux client side Requirement description

Processor PII 233 MHz or higher

Memory 48 MB minimum / 64 MB recommended

Hard drive 50 MB

Display 800 x 600 minimum / 1024 x 768
recommended

Intranet test LAN base 16 MB token ring / 100 MB BaseTx
Ethernet recommended

Operating system One of the following is required:

� Red Hat 8.0

� Red Hat 9.0

� Red Hat Enterprise Linux WS 3.0
Update 1 or 3

Browser Netscape Communicator 7.02 or later with
Java Plug-in 1.3.1 or later

484 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Table A-8 lists the requirements of server side for Linux on Intel platforms.

Table A-8 inux on Intel server requirements

Communication protocol TCP/IP

JDK Java 2 SDK supplied by WebSphere
Application Server

Linux server side Requirement description

Processor PII 500 MHz or higher

Hard drive 100 MB minimum

Memory 512 MB minimum / 768 MB recommended

Operating system One of the following is required

� Red Hat Enterprise Linux AS 3.0
Update 1 or 3

� Red Hat Enterprise Linux ES 3.0
Update 1 or 3

Application server One of the following is required:

� IBM WebSphere Application Server -
Express V5.1.1 v

� IBM WebSphere Application Server
V5.1.1

� IBM WebSphere Application Server
Network Deployment V5.1.1

� IBM WebSphere Application Server
For Developers V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1 for
Multiplatforms

Communication protocol TCP/IP

Communication services (LU0, LU6.2) Communications Server for Linux V6.1.2

Linux client side Requirement description

 Appendix A. Branch Transformation Toolkit development and runtime requirements 485

Table A-9 lists the requirements of development environment for Linux on Intel
platform.

Table A-9 inux on Intel development requirements

Database manager One of the following is required:

� DB2 UDB Enterprise Server Edition
v8.1 FP5 or FP7

� DB2 UDB Enterprise Server Edition
v8.2

� Oracle 8i Standard/Enterprise
Release 3 V8.1.7.4

� Oracle 9i Standard/Enterprise
Release 2 V9.2.0.5

Portal Connector IBM WebSphere Portal for Multiplatforms
V5.1

Linux development Requirement description

Processor PII processor 500 MHz. PIII 500 MHz or
higher recommended

Memory 1024 MB

Hard drive 2 GB minimum for WebSphere Studio
Application Developer; 4.5 GB minimum
for WebSphere Studio Application
Developer Integration Edition

Display 1024 x 768 minimum at a color setting of
16 bit for workstation

Operating system Red Hat Linux v7.2 or later

Integrated development environment One of the following is required for
development of workstations:

� IBM WebSphere Studio Application
Developer V5.1.1

� IBM WebSphere Studio Application
Developer Integration Edition V5.1.1

Browser Netscape Communicator 7.02 or later with
Java Plug-in 1.3.1 or later

Linux server side Requirement description

486 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

A.5 Sun Solaris requirements
Table A-10 lists the requirements for Solaris on server side.

Table A-10 Sun Solaris server runtime requirements

Solaris server side Requirement description

Processor Sparc workstation at 440 MHz, or faster

Hard drive 100 MB minimum

Memory 768 MB minimum / 1024 MB
recommended

Operating system One of the following is required:

� Solaris 8 with the Recommended
Patch Cluster of November 2003

� Solaris 9 with the Recommended
Patch Cluster of November 2003

Application server One of the following is required:

� IBM WebSphere Application Server -
Express V5.1.1

� IBM WebSphere Application Server
V5.1.1

� IBM WebSphere Application Server
Network Deployment V5.1.1

� IBM WebSphere Application Server
For Developers V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1 for
Multiplatforms

Communication protocol TCP/IP

 Appendix A. Branch Transformation Toolkit development and runtime requirements 487

A.6 IBM AIX requirements
Table A-11 lists the requirements of server side environment for AIX.

Table A-11 AIX server runtime requirements

Database manager One of the following is required:

� DB2 UDB Enterprise Server Edition
v8.1 FP5 or FP7

� DB2 UDB Enterprise Server Edition
v8.2

� Oracle 8i Standard/Enterprise
Release 3 V8.1.7.4

� Oracle 9i Standard/Enterprise
Release 2 V9.2.0.5

Portal Connector IBM WebSphere Portal for Multiplatforms
V5.1

Solaris server side Requirement description

AIX server side Requirement description

Processor 604e RS/6000Æ workstation at 375 MHz
or higher frequency

Hard drive 100 MB minimum

Memory 512 MB minimum / 768 MB recommended

Operating system One of the following is required:

� AIX Version 5.1 with the 5100-05 l

� AIX Version 5.2 with the 5200-01
recommended maintenance package
and APAR iY44183, and PTF
U484272 l

� AIX Version 5.2 with 5200-03
recommended maintenance package
l

� AIX 5L™ version 5.3 with
WebSphere Application Server
APAR PK01428

488 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Application server One of the following is required:

� IBM WebSphere Application Server -
Express V5.1.1

� IBM WebSphere Application Server
V5.1.1

� IBM WebSphere Application Server
Network Deployment V5.1.1

� IBM WebSphere Application Server
For Developers V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1.1

� IBM WebSphere Business Integration
Server Foundation V5.1 for
Multiplatforms

Communication protocol TCP/IP

Communication services (LU0, LU6.2) IBM Communications Server V6.1.2

Database manager One of the following is required:

� DB2 UDB Enterprise Server Edition
v8.1 FP5 or FP7

� DB2 UDB Enterprise Server Edition
v8.2

� Oracle 8i Standard/Enterprise
Release 3 V8.1.7.4

� Oracle 9i Standard/Enterprise
Release 2 V9.2.0.5

Portal Connector IBM WebSphere Portal for Multiplatforms
V5.1

AIX server side Requirement description

 Appendix A. Branch Transformation Toolkit development and runtime requirements 489

A.7 IBM z/OS requirements
Table A-12 lists the requirements for z/OS.

Table A-12 z/OS runtime requirments

A.8 Additional requirements
Depending on the framework services you use, you may require other hardware
and software to support financial devices. The following additional requirements

zSeries® eServer™ Requirement description

Processor Any hardware that supports z/OS 1.2 or
z/OSe 1.3, or even later versions. S/390
Parallel Enterprise Server. Generation 5
or 6, or ever later systems is
recommended

Hard drive 100 MB minimum

Memory 512 MB minimum /768 MB recommended

Operating system z/OS (5694-A01) 1.2 or later

Application server One of the following is required:

� IBM WebSphere Application Server
for z/OS V5.1

� IBM WebSphere Business Integration
Server Foundation for z/OS V5.1

Communication protocol TCP/IP

Communication services (LU0, LU6.2) IBM Communications Server V6.1.2

Database manager One of the following is required:

� IBM DB2 Universal Database. V7.0
for z/OS

� IBM DB2 Universal Database V8.0 for
z/OS

Portal Connector IBM WebSphere Portal for Multiplatforms
V5.1

490 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

apply to the type of workstation, that is, client, server, or development, that
accesses the financial device as shown in Table A-13.

Table A-13 Additional requirements

Framework component Additional requirements

J/eXtensions for Financial Services Any financial printer, magnetic stripe
reader/encoder, or check reader with a
device service that is compliant with the
J/XFS specification.

eXtensions for Financial Services Any financial printer, magnetic stripe
reader/encoder, or check reader with a
device service that is compliant with the
J/XFS specification.

LANDP MSR/E Device Service Any magnetic stripe reader/encoder
supported by the LANDP MSRE47##
server.

 Appendix A. Branch Transformation Toolkit development and runtime requirements 491

492 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Appendix B. Setting up a Branch
Transformation Toolkit
sample application

The toolkit application can be set up to run in the WebSphere test environment
within WebSphere Studio Application Developer Integration Edition 5.1.1 or on
WebSphere Studio Application Developer V5.1.1.

The Java client sample application includes a J2EE enterprise application (EAR)
file containing everything you need to run this sample. The procedures contained
in the first section describe how to set up or configure the EAR file and deploy it.

The HTML sample application can be set up to run in the WebSphere test
environment within WebSphere Studio Application Developer Integration Edition
5.1.1 . The HTML sample application includes a EAR file containing everything
you need to run this sample. The procedures contained in the second section
describes how to set up or configure the EAR file and deploy it.

All the resources needed by sample applications are provided by the Branch
Transformation Toolkit after it is installed successfully.

B

© Copyright IBM Corp. 2006. All rights reserved. 493

B.1 Setting up the Java sample application
The following procedure describes how to install the Java sample application in
WebSphere Studio Application Developer 5.1.1 and run the sample in one of the
test environment configurations. The procedure described here applies if you are
running WebSphere Studio Application Developer 5.1.1 on Microsoft Windows.

To set up the application in WebSphere Studio Application Developer 5.1.1,
perform the following steps:

1. Copy external files.

a. Locate the EAR file BTTJavaSample.ear from
<toolkit_root>\samples\JavaSampleApplication\StandAlone\BTTJavaSam
ple.ear

b. Extract the BTTJavaSampleWeb.war file from BTTJavaSample.ear, then
extract the \dse\server directory from the BTTJavaSampleWeb.war.

c. On your OS system, create a directory, c:\dse.

d. Copy all the files in the \dse\server directory you extracted from
BTTJavaSampleWeb.war to the c:\dse directory you created.

2. Create database and tables:

a. Run the following command in the DB2 command window to create a
database named sample:

DB2 CREATE DATABASE SAMPLE

Set a user and password for access to the database. For example, set
both user and password as db2admin.

b. Create three tables:

i. Create a directory called c:\temp.

ii. Copy <toolkit_root>\dbtools\Windows\DB2\tableDefinition\cha\
createCHATables.ddl to the c:\temp directory.

Note that <toolkit_root> refers to the root directory where you have the
toolkit installed.

iii. Change your current directory to c:\temp, and open a DB2 command
window.

iv. In the DB2 command window, run:

DB2 CONNECT TO SAMPLE USER db2admin USING db2admin.

v. In the DB2 Command Window, run:

db2 -tvf createCHATables.ddl

494 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

You will see messages indicating that CHAChildren, CHAInstance, and
CHAControl tables have been created successfully.

3. Import BTTJavaSample.ear.

a. Start WebSphere Studio Application Developer 5.1.1. From the menu bar,
open J2EE perspective. Select File → Import → EAR file. Click Next.

b. In the Import wizard, set the following parameters, and click Finish:

• EAR File:
<toolkit_root>\samples\JavaSampleApplication\StandAlone
\BTTJavaSample.ear

• Enterprise Application project name: BTTJavaSample

4. Import dummysnalu0.rar.

a. Open J2EE perspective and from the menu bar, select File → Import →
RAR file. Click Next.

b. In the Import wizard, set the following values, and click Finish:

• Connector File: <toolkit_root>\jars\ dummysnalu0.rar
• Connector Project: dummysnalu0Connector2

5. Set up server in WebSphere Studio Application Developer 5.1 test
environment.

a. Open Server perspective.

b. Select New → Server and Server Configuration, and set the following
parameters, and click Finish:

• Server name: JavaSampleServer
• Folder: Servers
• Server Type: Integration Test Environment

c. Define JAAS Authentication entries in server configuration.

i. In the Server Configuration panel, double-click the server instance
JavaSampleServer.

ii. Select the Security tab. In the Cell Settings section, click Add to add a
JAAS Authentication Entry and set the following parameters:

• Alias: CHA
• User ID: db2admin
• Password: db2admin
• Description: JavaSample

iii. Click Add to add a JAAS Authentication Entry and set the following
parameters, and click OK:

• Alias: sna
• User ID: sna

 Appendix B. Setting up a Branch Transformation Toolkit sample application 495

• Password: sna
• Description: JavaSample

d. Select the Source tab. In the Server Settings section, click Add to add
IBM DB2 JDBC Provider (XA) to the JDBC Provider list.

e. In the window that pops up, select IBM DB2 in the Database type section
and DB2 JDBC Provider (XA) in the JDBC Provider type section. Click
Next.

f. In the window that pops up, input name DB2 JDBC Provider (XA). Click
Finish.

g. In the Data Source tab and the Server Settings section, select the DB2
JDBC Provider (XA) in the JDBC Provider list and click Add to create a
data source. In the window that pops up, select DB2 JDBC Provider (XA)
in the type of JDBC Provider section and select Version 5.0 data source
in the Data Source type section. Click Next.

h. In the pop-up Modify Data Source window, set the following parameters:

• Name: CHADataSource
• JNDI name: jdbc/CHADataSource
• Description: CHA Exercise
• Statement cache size: 10
• Data source helper class name:

com.ibm.websphere.rsadapter.DB2DataStoreHelper
• Connection timeout: 1800
• Maximum connections: 10
• Minimum connections: 1
• Reap time: 180
• Unused timeout: 1800
• Aged timeout: 0
• Purge policy: EntirePool
• Component-managed authentication alias: CHA
• Container-managed authentication alias: CHA
• Select the check box against Use this data source in container

managed persistence (CMP).

i. Select the J2C tab. In the J2C Resource Adapters section, click Add to
add a Resource Adapter to the Resource Adapter list.

j. In the Create Resource Adapter window that pops up, click OK.

k. In the Resource Adapter list, select dummysnalu0Connector. In the J2C
Connection Factories section, click Add.

l. In the Create Connection Factory window that pops up, set the following
parameters, and click OK:

• Name: snalu0

496 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

• JNDI name: snalu0
• Description: snaDataSource
• Component-managed authentication alias: sna
• Container-managed authentication alias: sna

All other fields can be left with their default values.

m. In the Resource Properties section, set the following parameters:

• TestFile: http://127.0.0.1:9080/BTTJavaSampleWeb/response.res
• userName: sna
• userPassword: sna

n. Save the modification to server configuration and close the Server
Configuration Content Editor.

6. Do the EJB to RDB mapping.

a. From the J2EE perspective, right-click BTTCHAEJB and select
Generate → EJB to RDB Mapping.

b. In the EJB to RDB Mapping window, select the Create a new backend
folder option, and click Next.

c. Select the Top Down option and click Next.

d. Input the following settings, and click Finish:

• In Target Database section, select DB2 Universal Database V8.1.
• In Database name section, type SAMPLE.
• In Schema name section, type db2admin.
• Deselect Generate DDL and WebSphere 3.x Compatible.

7. Deploy BTTCHAEJB, bttsvcinfra, BTTFormatterEJB and
BTTJavaSampleEJB.

a. From J2EE perspective, right-click BTTCHAEJB. Select Generate →
Deploy and RMIC Code.

b. In the window that pops up, select all the check boxes and click Finish.

c. From the J2EE perspective, right-click bttsvcinfra. Select Generate →
Deploy and RMIC Code.

d. From the J2EE perspective, right-click BTTFormatterEJB. Select
Generate → Deploy and RMIC Code.

e. In the window that pops up, select all the check boxes and click Finish.

f. From J2EE perspective, right-click BTTJavaSampleEJB, and select
Generate → Deploy and RMIC Code.

g. In the window that pops up, select all the check boxes and click Finish.

 Appendix B. Setting up a Branch Transformation Toolkit sample application 497

8. Associate the BTTJavaSample project with the server configuration.

In the Servers view, right-click and select Add and Remove Projects. Add
BTTJavaSample, and click Finish.

9. Start the JavaSampleServer.

In the JavaSampleServer view, right-click and select Start.

10.Configure the BTTJavaSampleClient project classpath

Add the XERCESJAR variable.

11.Run the JavaClient.

a. From the WebSphere Studio Application Developer menu, select Run →
Run.

b. Double-click Java application in the new window, and select Browse in
the right panel.

c. Select BTTJavaSampleClient → Search under the main-class →
OpenDesktop, and click Run.

B.2 Setting up the HTML sample application
The following procedure describes how to install HTML sample application in
WebSphere Studio Application Developer Integration Edition 5.1.1 and run the
sample in one of the test environment configurations. Follow this procedure if you
are running WebSphere Studio Application Developer Integration Edition 5.1.1
on Windows.

To set up the application in WebSphere Studio Application Developer Integration
Edition 5.1.1, perform the following tasks:

1. Copy external files.

a. Locate the EAR file <toolkit_root>\samples\HtmlSampleBPApplication\
BTTHTMLSampleBPEAR.ear

b. Extract the BTTHTMLSampleWeb.war file from
BTTHTMLSampleBPEAR.ear, then extract the \dse directory from the
BTTHTMLSampleWeb.war.

c. In your OS, create a directory, c:\dse.

d. Copy all the files in the \dse directory you extracted from
BTTHTMLSampleWeb.war to the c:\dse directory you created.

498 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

2. Create database and tables.

a. Run the following in the DB2 command window to create a database
named sample:

DB2 CREATE DATABASE SAMPLE

You can set user and password for database sample, for example, set
both user and password as db2inst1.

b. Create three tables.

i. Create a directory called c:\temp.

ii. Copy <toolkit_root>\dbtools\Windows\DB2\tableDefinition\cha\
createCHATables.ddl to the c:\temps directory.

iii. Shift to c:\temp directory and open the DB2 command window.

iv. In DB2 command window, run:

DB2 CONNECT TO SAMPLE USER db2admin USING db2admin

v. In DB2 command window, run:

db2 -tvf createCHATables.ddl

You will see messages indicating that CHAChildren, CHAInstance, and
CHAControl tables have been created successfully.

3. Import BTTHTMLSampleBPEAR.ear.

a. Start WebSphere Studio Application Developer Integration Edition
5.1.1 . From the menu bar, open J2EE perspective. Select File →
Import → EAR file, and click Next.

b. In the Import wizard, set the following parameters:

• EAR File: <toolkit_root>\samples\HtmlSampleBPApplication\
BTTHTMLSampleBPEAR.ear

• Enterprise Application project name: BTTHTMLSampleBPEAR

c. Click Next.

d. Select BTTHTMLSampeBP.jar, and click Finish.

4. Import dummysnalu0.rar.

a. Open J2EE perspective and from the menu bar, select File → Import →
RAR file, and click Next.

b. In the Import wizard, set the following values, and click Finish:

• Connector File: <toolkit_root>\jars\ dummysnalu0.rar
• Connector Project: dummysnalu0Connector

5. Open J2EE perspective. In the Project Navigator Panel, select
BTTHTMLSampleBP and right-click Source, and then Delete .

 Appendix B. Setting up a Branch Transformation Toolkit sample application 499

6. Import BTTHTMLSampleBP.jar to BTTHTMLSampleBP project.

a. Extract the BTTHTMLSampleBP.jar file from
<toolkit_root>\samples\HtmlSampleBPApplication\BTTHTMLSampleBPE
AR.ear

b. Open J2EE perspective. In the Project Navigator Panel, right-click
BTTHTMLSampleBP and select Import → Zip file. Set the following
parameters, and click Finish:

• From Zip file: <toolkit_root>/ear/BTTHTMLSampleBP.jar
• Into folder: BTTHTMLSampleBP

7. Edit the source folder.

a. Open the J2EE perspective. In the Project Navigator Panel, right-click
BTTHTMLSampleBP and select Properties → Java Build Path.

b. In the Source panel, select BTTHTMLSampleBP/source and click Edit.

c. In the window that pops up, select Project as source folder option. Click
OK.

d. Select the check box against Allow output folders for source folders,
and click OK.

8. Correct the build path error.

a. Open J2EE perspective. In the Project Navigator Panel, right-click
BTTHTMLSampleBP and select PropertiesJava Build Path.

b. In the Libraries Panel, select WebSphere V5.1 EE JRE and click
Remove.

c. Click Add Library.

d. In the window that pops up, select JRE System Library. Click Next.

e. Select WebSphere v5.1 EE JRE and click Finish.

f. Click OK.

9. Use BPEL file to generate the deploy code.

a. Open J2EE perspective. In the Project Navigator Panel, select
BTTHTMLSampleBP. Right-click AccountTransfer.bpel and select
EnterPrise Services → Generate Deploy Code.

b. In the window that pops up, click OK.

10.From the menu bar, select Project → Rebuild All.

11.Modify the WSDL file and rebuild the project BTTHTMLSampleWeb.

a. Open J2EE perspective. In the Project Navigator Panel, select
BTTHTMLSampleWeb and open AccountTransferInterface.wsdl.

500 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

b. Modify the following part:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace=http://btt.ibm.com/base
schemaLocation="BTTSystemData.xsd">

 </xsd:import>

</xsd:schema>

c. Save the file. Right-click BTTHTMLSampleWeb and select Rebuild
Project.

12.Set up server in WebSphere Studio Application Developer 5.1 test
environment.

a. Open the Server perspective.

b. Click New → Server and Server Configuration and set the following
parameters, and click Finish:

• Server name: HTMLSampleServer
• Folder: Servers
• Server Type: Integration Test Environment

c. Define JAAS Authentication entries in server configuration.

i. In the Server Configuration panel, double-click the server instance
HTMLSampleServer.

ii. Select the Security tab. In the Cell Settings section, click Add to add a
JAAS Authentication Entry and set the following parameters:

• Alias: CHA
• User ID: db2admin
• Password: db2admin
• Description: HTMLSample

iii. Click Add to add a JAAS Authentication Entry, set the following
parameters, and click OK:

• Alias: sna
• User ID: sna
• Password: sna
• Description: HTMLSample

d. Select the Data source tab. In the Server Settings section, Click Add to
add an IBM(R) DB2 JDBC Provider (XA) to the JDBC Provider list.

e. In the window that pops up, select IBM DB2 in the DataBase type section
and DB2 JDBC Provider (XA) in the JDBC Provider type section. Click
Next.

 Appendix B. Setting up a Branch Transformation Toolkit sample application 501

f. In the window that pops up, input the name DB2 JDBC Provider (XA) and
click Finish.

g. In the Data Source tab and Server Settings section, select DB2 JDBC
Provider (XA) in the JDBC Provider list and click Add to create a Data
Source. In the window that pops up, select DB2 JDBC Provider (XA) in
the type of JDBC Provider section and select Version 5.0 data source in
the data source type section. Click Next.

h. In the pop-up Modify Data Source window, set the following parameters:

• Name: CHADataSource
• JNDI name: jdbc/CHADataSource
• Description: CHA Exercise
• Statement cache size: 10
• Data source helper class name:

com.ibm.websphere.rsadapter.DB2DataStoreHelper
• Connection timeout: 1800
• Maximum connections: 10
• Minimum connections: 1
• Reap time: 180
• Unused timeout: 1800
• Aged timeout: 0
• Purge policy: EntirePool
• Component-managed authentication alias: CHA
• Container-managed authentication alias: CHA
• Select the check box for the field Use this data source in container

managed persistence (CMP)

i. Select the J2C tab. In the J2C Resource Adapters section, click Add to
add an Resource Adapter to the Resource Adapter list.

j. In the Create Resource Adapter window that pops up, click OK.

k. In the Resource Adapter list, select dummysnalu0Connector. In the J2C
Connection Factories section, click Add.

l. In the Create Connection Factory window that pops up, set the following
parameters, and click OK:

• Name: snalu0
• JNDI name: snalu0
• Description: snaDataSource
• Component-managed authentication alias: sna
• Container-managed authentication alias: sna

All other fields can be left with their default values.

m. In the Resource Properties section, set the following parameters:

• TestFile: http://127.0.0.1:9080/BTTHTMLSampleBPWeb/response.res

502 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

• userName: sna
• userPassword: sna

n. Save the modification to server configuration and close the server
configuration content editor.

13.Do EJB to RDB mapping.

a. From the J2EE perspective, right-click BTTCHAEJB and select
Generate → EJB to RDB Mapping.

b. In the EJB to RDB Mapping window, select Create a new backend folder
option, click Next.

c. Select Top Down option and click Next.

d. Carry out the following settings, and click Finish:

• In Target Database section, select DB2 Universal Database(TM) V8.1
• In Database name section, type SAMPLE.
• In Schema name section, type db2admin.
• Uncheck the check boxes against Generate DDL and WebSphere 3.x

Compatible.

14.Deploy BTTCHAEJB, BTTFormaterEJB, BTTHTMLSampleBPEJB,
bttsvcinfra, BTTHTMLSampleEJB.

a. From the J2EE perspective, right-click BTTCHAEJB. Select Generate →
Deploy and RMIC Code.

b. In the window that pops up, select all the check boxes and click Finish.

c. From the J2EE perspective, right-click BTTFormaterEJB, select
Generate → Deploy and RMIC Code.

d. In the window that pops up, select all the check boxes and click Finish.

e. From the J2EE perspective, right-click BTTHTMLSampleBPEJB, select
Generate → Deploy and RMIC Code.

f. In the window that pops up, select all check boxes, and click Finish.

g. From the J2EE perspective, right-click bttsvcinfra, select Generate →
Deploy and RMIC Code.

h. In the window that pops up, check all the check boxes and click Finish.

i. From the J2EE perspective, right-click BTTHTMLSampleEJB, select
Generate → Deploy and RMIC Code.

j. In the window that pops up, select all the check boxes and click Finish.

15.Associate the BTTHTMLSample project with the server configuration.

In the Servers view, right-click and select Add and Remove Projects. Add
BTTHTMLSampleBPEAR. Click Finish.

 Appendix B. Setting up a Branch Transformation Toolkit sample application 503

16.Start HTMLSampleServer.

In the HTMLSampleServer view, right-click and select Start.

17.Run HTMLSample.

Open the Web browser and input the following URL:

http://serverName:9080/BTTHTMLSampleWeb/btt/html/sign/prepareSignIn.do

504 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247160

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247160.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG247160.zip Zipped Code Samples

C

© Copyright IBM Corp. 2006. All rights reserved. 505

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 3 MB minimum
Operating System: Windows or Linux.

See Appendix A, “Branch Transformation Toolkit
development and runtime requirements” on page 477 for
detailed requirements

Processor: Pentium® 1 GHZ or higher
Memory: 512 MB or higher

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

506 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

acronyms
API application programming
interface

BMS basic mapping support

BPEL Business Process Execution
Language

BPEL4WS Business Process Execution
Language for Web Services

CCI Common Client Interface

CHA Common Hierarchical Area

CMP container managed
persistence

CMP Container Managed
Persistence

CMP Container-Managed
Persistence

Context context=

CRUD create, retrieve, update, and
delete

CSS Cascading Style Sheet

EAR Enterprise Application Archive

EBCDIC Extended Binary Coded
Decimal Interchange Code

EIS Enterprise Information
System

EJB Enterprise JavaBean

EJBQL EJB Query Language

EMF Eclipse Modeling Framework

FDML Flow Definition Markup
Language

GUI graphical user interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HTTP over SSL

IBM International Business
Machines Corporation

Abbreviations and

© Copyright IBM Corp. 2006. All rights reserved.
IDE integrated development
environment

ITSO International Technical
Support Organization

J2EE Java 2 Platform, Enterprise
Edition

JAAS Java Authentication and
Access Service

JAR Java archive

JCA J2EE Connector Architecture

JMS Java Message Service

JSF JavaServer Faces

JSP JavaServer Pages

JVM Java Virtual Machine

MFS Message Format Service

MSR magnetic stripe reader

SAE Single action EJB

SOAP Simple Object Access
Protocol

SSL Secure Socket Layer

UDDI Universal Description
Discovery and Integration

URI Uniform Resource Identifier

WAR Web Application

WAR Web archive

WAR Web archiving

WDO WebSphere Data Objects

WLM Workload Management

WSDL Web Services Description
Language

WSIF Web Services Invocation
Framework

XPATH XML Path Language

 507

508 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 509. Note that some of the documents referenced here may
be available in softcopy only.

� WebSphere Studio Application Developer Version 5 Programming Guide,
SG24-6957

� Exploring WebSphere Studio Application Developer Integration Edition 5.0,
SG24-6200

� WebSphere Business Integration Server Foundation V5.1 Handbook,
SG24-6318

Online resources
These Web sites and URLs are also relevant as further information sources:

� Apache Struts

http://struts.apache.org/index.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

© Copyright IBM Corp. 2006. All rights reserved. 509

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://struts.apache.org/index.html

IBM Global Services

ibm.com/services

510 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
adding

CHA
formatter service 303

DummyJournal
BTTBank EAR project 373
bttsvcinfraEJB EJB project 374
withdrawal single action EJB 376

format settings
dse.ini 288

journal service 360
Web components 325

application
adding

test environment 210
deployment 214
packaging 75
presentation components

Web container 296
scenario 226

application logic layer 10
components 17

business process 17
communication services 18
database services 18
single action EJB 18

application presentation layer 10
components 17

bean invoker factory 17
Java client/server messaging APIs 17
JavaServer Pages 17
sessions 17
Struts extensions 17

B
back-end system connectivity 245
base sample application

deployment 209
testing 209

bean invoker pattern 462
base invoker class 462
bean invoker factory 463
bean invoker pool 463

© Copyright IBM Corp. 2006. All rights reserved.
bean proxy cache 463
end-user extended invoker 463
interface for channels 463

book organization 5
bottom-up development 253
BPEL Editor 398
BPEL4WS support 244
Branch Transformation Toolkit 234

additional requirements 490
application logic layer 293
application presentation layer 292
architecture 289

components 293
tiers 293

client 291
components 59

business logic layer 65
HTML client 59
Java clients 59
presentation layer 60
session management 65

development 477
application 248

development tools
business process wizard 37
CHA editor 38
formatter editor 38
graphical builder 38
Struts tools extension 39

events 70
IBM AIX 488
IBM z/OS 490
installation 41
Linux on Intel 484
message formatting services 70
Microsoft Windows

Server 2003 483
XP 481

migration
planning 57

presentation layer components
abnormal application navigation 64
application flow 63
Base Action 60

 511

Base Form Bean 61
BTT controller 60
complex action 61
configuration 62
exception handling 65
JSP context access 62
lifecycle notification 64
multi-channel capabilities 63
sub-modules/applications 63
tag libraries 62
validation 64
WSIF access action 62
WSIF-to-context formatter 62

project
creation 255

runtime data management 69
runtime requirements 477
sample application

HTML setup 498
Java setup 494
setup 493

services 70
solution

fully distributed 69
local dynamic 69
local predefined 69

Sun Solaris 487
WebSphere Studio Application Developer

plug-ins 39
Windows 2000 479

Branch Transformation Toolkit 4.3
extensions 83

Branch Transformation Toolkit 5.1
architecture 8

application server tier 8
back-end enterprise tier 8
client tier 8

business process architecture
access class 66
Common Hierarchical Area 67
custom property 66
helper class 66
Java snippets 67
navigation condition 68
process initialization 66
process termination 66
State Observer 66
tooling 68
Web service 68

limitations 85
migration

additional requirements 26
application code 22
deployment processes 22
development environment 22
development requirements 24
hardware requirements 23
runtime environments 22
runtime requirements 24
software requirements 23
testing 22

Branch Transformation Toolkit V5.1
application

building 225
concept mappings

new tools 19
development 223
new tools

business process wizard 20
CHA editor 19
format editor 20
graphical builder 19
migration tools 20
struts tools extensions 20

BTTBankProcess project
adding code 412

business logic layer 153
configuration

business process 153
single action EJB 176

Business Process BTT Wizard 399
business rule beans 245

C
CCI (Common Client Interface) 74
CHA (Common Hierarchical Area) 13

context types
local context 231
remote context 232

deployment 151
editor

introduction 266
views 267

client
HTML browser 10
invoker 307
Java 10

512 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

operation 307
preparation 132
server SAE strategy 307

CMP (Container-Managed Persistence) 247
Common Client Interface (CCI) 74
Common Hierarchical Area (CHA) 13
component

application server tier 295
test tools 241

concept mappings 15
application server components 15

flow processors 15
server operations 16
server side components 16

Toolkit application architecture 15
configuring

BTTBankEJB project 376
CHA settings

dse.ini 279
DataSource 259
generated projects 415
Struts Tools BTT Extensions

sample application 348
WithdrawalServerOp session bean 316

connecting
view to operation 454

constructing
deposit operation 397
DummyJournal service 367

Container-Managed Persistence (CMP) 247
copying

client definition files 137
JAR files

BaseSample project 120
response.res file

BaseSampleWeb project 121
create, retrieve, update, and delete (CRUD) 247
creating

CHA context 277
CHA database 116
client 133
client operation 434
context hierarchy

CHA editor 265
corresponding validator 334
data elements 270
DummyJournal

Java project 367
format definitions 283

format elements 283
invoker 461

Struts actions 353
Java client

VisualBeans usage 442
Java project

user-defined classes 122
message formats

format editor 280
operation view 445
server 143
server configuration 258
single action EJB 307
Struts module

withdrawal operation 321
Web diagram

Struts module 323
withdrawal

invoker 464
single action EJB 311

WithdrawalServerOp session bean 313
CRUD (create, retrieve, update, and delete) 247

D
debuggers 243
defining proxy

client side dse.ini 306
designing

application flow 326
Struts Web application

top-down approach 323
developing

form bean 329
rich Java client 431
Web facade

Struts Tools BTT Extensions 320
development

paths 248
WebSphere Studio Application Developer 236

displaying
operation messages 457

E
EIS (Enterprise Information System) 74
EJB (Enterprise JavaBean) 10
EJB container

application logic components 297
Business Process Component 297

 Index 513

communication services 298
Generic Pool 298
JDBC database services 298
single action EJB 297
startup beans 297

components
business process 14
single action EJB 14
startup beans 14

electronic journal messages 229
end-to-end programming model 58
Enterprise Information System (EIS) 74
Enterprise JavaBean (EJB) 10

development tools 240
Extensible Markup Language (XML) 11

F
fixing errors 118
format editor

introduction 280
views 280

G
generating

deploy code
deposit.bpel 413

deployment 303
bttsvcinfraEJB project 364

EJB
RDB mapping 301

RMIC code 303
bttsvcinfraEJB project 364

graphical builder
graphical editor view 383
outline view 384
properties view 384

graphical user interface (GUI) 10
GUI (graphical user interface) 10

H
host transaction messages 229
HTML (HyperText Markup Language) 11
HTML client 213
HTTPS (Hypertext Transfer Protocol Secure) 11
human workflow support 244
HyperText Markup Language (HTML) 11
Hypertext Transfer Protocol Secure (HTTPS) 11

I
implementing

DummyJournal service 369
Struts Web diagram 327

importing
BTTCHAEAR.ear 130
BTTCHAEJB.jar 299
BTTFormatter.ear 124
BTTFormatterEJB.jar 304
BTTServicesInfra.ear 127
dummysnalu0.rar 131
JARs 360
more contexts 279
more data elements 275
more formats 288
prebuilt project 320
service EJB project

bttsvcinfra.jar 361
service Web project

BTTServicesInfraWeb.war 365
installing

toolkit applications
runtime platform 55

invoking
DummyJournal service

withdrawal operation 375

J
J2EE (Java 2 Platform, Enterprise Edition) xi
J2EE Connector Architecture (JCA) 10
Java 2 Platform, Enterprise Edition (J2EE) xi
Java client 211

components
client tier 294

Java Connector Architecture (JCA) 74
Java development tools 238
Java Virtual Machine (JVM) 69
JavaServer Pages (JSP) 17
JCA (J2EE Connector Architecture) 10
JCA (Java Connector Architecture) 74
JSP (JavaServer Pages) 17
JVM (Java Virtual Machine) 69

L
launching

migrated application 211
laying out

presentation logic

514 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

deposit operation 416

M
magnetic stripe reader (MSR) 11
migrating

data 104
flow processors 109
format definitions 104
screen flow processors 110
self-defined files 111
server operations 106
tooling artifacts 113

migration 1
adding code 153
analysis 90
application 97
considerations

custom extensions 82
elements 35

application code 36
deployment processes 56
development environment 36
installing development environments 40
runtime environment 55
testing 54

introduction 22
limitations 87
manual modification 115
modifying code 153
preparation 89–90
project

creation 98
stages 27
strategy 21

migration stage 28
migration tools

customization 96
diagnosis 114
extension points 84
setup 91
usage 102

modifying
generated definition files 115
invoker properties files 123
source code 316

MSR (magnetic stripe reader) 11

O
operating systems

IBM AIX 23
IBM z/OS 23
Microsoft Windows

2000 23
Server 2003 23
XP 23

Red Hat Linux on Intel 23
Sun Solaris 23

P
post-migration

activities 119
stages 29

premigration
stages 28

code preparation 33
education 30
installing new development environment 31
installing runtime environment 32
migration assessments 30
migration plan 33
research 32

preparing
CHA database 210
runtime environment 357
sample application 254

presentation layer
HTML client 182
Java client 202

profiling tools 242
programming model extensions 246

activity session services 246
asynchronous beans 246
Container-Managed Messaging 247
Container-Managed Persistence over anything
247
distributed map 247
dynamic query service 247
gateway filters 247
internationalization service 246
last participant support 246
object pools 247
scheduler service 246
startup beans 246
work areas 246

project properties

 Index 515

setup 299
BTTBankProcess 411
BTTServicesInfraWeb 366
bttsvcinfraEJB 362
DummyJournal 368

Q
quality of service

application profiling 247
back-up cluster support 247

R
realizing

JSPs 340
Struts actions 336

Redbooks Web site 509
contact us xiv

registering
DummyJournal service 379

relational database tools 241
removing

invalid EJB modules 298
reverse engineering

withdrawal operation 385
running

application 472
BTT Bank sample application 357
sample code 358

runtime environment
package structure 55

S
SAE (single action EJB) 432
sample project requirements 120
server

configuration 143
preparation 132

setting up
application

WebSphere Application Server 215
BPEL project 399
business process wizard 53
CHA 298
CHA editor 49
format editor 50
formatter services 298
graphical builder 53

migration tool 54
sample database 258
service infrastructure 360
Struts Tools Extensions 53
WebSphere

Studio environment 442
testing environment 258

shared components
across containers 16
CHA formatter service 13
Common Hierarchical Area 13

single action EJB (SAE) 432
Struts

application development tools 241
Struts Tools BTT Extensions

action condition 347
action mapping 347
final nodes 347
processor mapper 348
screen flow context 347
WSIF message mapper 347

system specification
development 227

architecture 227
component interactions 228
internal data structure 230
internal data structure, performance im-
provement 233
message definition 229

T
tailoring

JSPs 350
terms and definitions 11

client side terms and concepts 12
client operation 13
contexts 12
events 13
formatters 12

server side terms and concepts 13
EJB container components 14
shared components across containers 13
Web container components 14

test environment
configuration 210

testing and publishing tools 242
top-down development 248
topology 76

516 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

application server 77
enterprise server 77
proxy server 77
Web server 77

U
Uniform Resource Identifier (URI) 64
URI (Uniform Resource Identifier) 64
using

BPEL editor 405
Business Process BTT Wizard 382, 405
graphical builder 382, 401
integration edition 243
Struts Tools BTT Extensions 347

V
verifying

working
DummyJournal 381

W
WDO (WebSphere Data Objects) 62
Web container

components
client/server messaging API 14
invoker 14
Struts extensions 14

Web diagram
completion 345

Web services development tools 239
Web Services Invocation Framework (WSIF) 10, 62
WebSphere Business Integration Server Founda-
tion 217
WebSphere Data Objects (WDO) 62
WebSphere Studio

features
leveraging 235

IBM Branch Transformation Toolkit
architecture 3
topologies 3

withdrawal
reply message 283
request message 283

working
CHA editor 266
format editor 280

workload management

benefits 78
considerations 80

application 80
fault tolerance 82
load balancing 81
session management 81

decisions 78
server cluster 79
Web server 79

WSIF (Web Services Invocation Framework) 10

X
XML (Extensible Markup Language) 11
XML tools 240
XSL tools 240

 Index 517

518 IBM Branch Transformation Toolkit 5.1 Migration and Usage Guidelines

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

IBM
 Branch Transform

ation Toolkit 5.1
M

igration and Usage Guidelines

®

SG24-7160-00 ISBN 0738495530

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

IBM Branch Transformation
Toolkit 5.1
Migration and Usage Guidelines

Migrate from Branch
Transformation
Toolkit 4.3 to 5.1

Build applications
using Branch
Transformation
Toolkit 5.1

Test and
troubleshoot your
application

This IBM Redbook shows in detail IBM Branch Transformation
Toolkit for WebSphere Studio Version 5.1 and explains how to
migrate from Branch Transformation Toolkit Version 4.3 to
Branch Transformation Toolkit 5.1. We provide guidelines for
the architecture of the target solution, the correct use of
migration tools, and migration-sizing. This book also
describes how to build new applications in Branch
Transformation Toolkit V5.1. We explain both top-down and
bottom-up development, and discuss how to use WebSphere
Studio and Branch Transformation Toolkit development
plug-ins. We also describe rich Java client development using
the Branch Transformation Toolkit.

This book is intended for the following audiences:

� Solution architects who require a description of IBM
Branch Transformation Toolkit for WebSphere Studio and
how to build a solution

� IT professionals and executives who require a broad
understanding of the architecture of the Branch
Transformation Toolkit and its implementation

� Readers who are familiar with object-oriented software
and related development techniques, and have a general
knowledge of Java 2 Platform, Enterprise Edition (J2EE)
and related technologies

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Migration
	Chapter 1. Introduction to IBM Branch Transformation Toolkit
	1.1 Objectives
	1.2 How this book is organized
	1.3 Branch Transformation Toolkit 5.1 architecture
	1.4 Terms and definitions
	1.4.1 Client-side terms and concepts
	1.4.2 Server side terms and concepts

	1.5 Concept mappings
	1.5.1 Toolkit application architecture
	1.5.2 Application server components
	1.5.3 New tools in Branch Transformation Toolkit V5.1

	Chapter 2. Migration strategy
	2.1 Introduction to migration
	2.2 Hardware and software requirements
	2.2.1 Development and runtime requirements
	2.2.2 Additional requirements

	2.3 Migration stages
	2.3.1 Premigration stages
	2.3.2 The migration stage
	2.3.3 Post-migration stage

	2.4 Things to do before migration
	2.4.1 Migration assessments
	2.4.2 Education
	2.4.3 Installation of the new development environment
	2.4.4 Installation of a runtime environment
	2.4.5 Research
	2.4.6 Code preparation
	2.4.7 The migration plan

	2.5 Elements of migration
	2.5.1 Application code
	2.5.2 Development environment
	2.5.3 Installation of development environments
	2.5.4 Testing
	2.5.5 Runtime environment
	2.5.6 Deployment processes

	Chapter 3. Planning a Branch Transformation Toolkit migration
	3.1 Version 5.1 End-to-end programming model
	3.1.1 Branch Transformation Toolkit components
	3.1.2 Tools
	3.1.3 Other features

	3.2 Application packaging and topology
	3.2.1 Application packaging
	3.2.2 Topology

	3.3 Workload management decisions
	3.3.1 Benefits
	3.3.2 Web server workload management

	3.4 Server cluster workload management
	3.4.1 Workload management considerations

	3.5 Migration considerations for custom extensions
	3.5.1 Extensions in Branch Transformation Toolkit 4.3
	3.5.2 Extension points in migration tools

	3.6 Limitations
	3.6.1 Limitations of Branch Transformation Toolkit 5.1 function
	3.6.2 Limitations for migration

	Chapter 4. Preparing for migration
	4.1 Analysis and preparation
	4.2 Setting up the migration tools
	4.3 Customizing the migration tools

	Chapter 5. Migrating an application
	5.1 Creating a new migration project
	5.2 Using the migration tools
	5.2.1 Migrating the dse.ini file
	5.2.2 Migrating data and format definitions
	5.2.3 Migrating server operations
	5.2.4 Migrating flow processors
	5.2.5 Migrating screen flow processors
	5.2.6 Migrating self-defined files
	5.2.7 Migrating tooling artifacts
	5.2.8 Diagnosis for the migration tool

	5.3 Manual modification for migration
	5.3.1 Modifying the generated definition files
	5.3.2 Creating a CHA database
	5.3.3 Fixing errors

	Chapter 6. Post-migration activities
	6.1 Sample project requirements
	6.1.1 Copying the required JAR files to the BaseSample project
	6.1.2 Copying the response.res file to the BaseSampleWeb project
	6.1.3 Creating a Java project to include user-defined classes
	6.1.4 Modifying invoker's properties files

	6.2 Importing the required EARs for version 5.1
	6.2.1 Importing the BTTFormatter.ear
	6.2.2 Importing BTTServicesInfra.ear
	6.2.3 Importing BTTCHAEAR.ear
	6.2.4 Importing dummysnalu0.rar

	6.3 Preparing the client and the server
	6.3.1 Creating the client
	6.3.2 Copying client definition files
	6.3.3 Creating a server

	6.4 Adding and modifying code
	6.4.1 Business logic layer
	6.4.2 Presentation layer

	Chapter 7. Testing and deployment
	7.1 Configuring the test environment
	7.1.1 Preparing the CHA database
	7.1.2 Creating a server
	7.1.3 Adding application to the test environment
	7.1.4 Launching the migrated application

	7.2 Java client
	7.3 HTML client
	7.4 Application deployment

	Part 2 Development with Branch Transformation Toolkit V5.1
	Chapter 8. Building an application with Branch Transformation Toolkit V5.1
	8.1 Before getting started
	8.1.1 Application scenario
	8.1.2 Developing the system specification
	8.1.3 Branch Transformation Toolkit

	8.2 Leveraging the WebSphere Studio features
	8.2.1 Development using WebSphere Studio Application Developer
	8.2.2 Using Integration Edition

	8.3 Developing an application using Branch Transformation Toolkit
	8.3.1 Development paths
	8.3.2 Preparing for sample application
	8.3.3 Creating the context hierarchy with CHA Editor
	8.3.4 Creating message formats with Format Editor
	8.3.5 The Branch Transformation Toolkit architecture
	8.3.6 Setting up CHA and formatter services
	8.3.7 Creating a Single Action EJB
	8.3.8 Developing the Web facade with Struts Tools BTT Extensions
	8.3.9 Adding the Journal service
	8.3.10 Using Graphical Builder and Business Process BTT Wizard

	8.4 Developing a rich Java client
	8.4.1 Rich Java client overview
	8.4.2 Creating the client operation
	8.4.3 Creating Java client using VisualBeans
	8.4.4 Connecting the view to the operation
	8.4.5 Displaying the operation messages
	8.4.6 Creating the invoker
	8.4.7 Running this application

	Appendix A. Branch Transformation Toolkit development and runtime requirements
	A.1 Microsoft Windows 2000
	A.2 Microsoft Windows XP requirements
	A.3 Microsoft Windows Server 2003 requirements
	A.4 Linux on Intel requirements
	A.5 Sun Solaris requirements
	A.6 IBM AIX requirements
	A.7 IBM z/OS requirements
	A.8 Additional requirements

	Appendix B. Setting up a Branch Transformation Toolkit sample application
	B.1 Setting up the Java sample application
	B.2 Setting up the HTML sample application

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

